TabHLH27 orchestrates root growth and drought tolerance to enhance water use efficiency in wheat

被引:1
|
作者
Wang, Dongzhi [1 ]
Zhang, Xiuxiu [1 ]
Cao, Yuan [1 ,2 ]
Batool, Aamana [2 ,3 ]
Xu, Yongxin [1 ,2 ]
Qiao, Yunzhou [3 ]
Li, Yongpeng [3 ]
Wang, Hao [1 ,2 ]
Lin, Xuelei [1 ]
Bie, Xiaomin [4 ]
Zhang, Xiansheng [4 ]
Jing, Ruilian [5 ]
Dong, Baodi [2 ,3 ]
Tong, Yiping [1 ]
Teng, Wan [1 ]
Liu, Xigang [6 ]
Xiao, Jun [1 ,2 ,7 ]
机构
[1] Chinese Acad Sci, Inst Genet & Dev Biol, Key Lab Plant Cell & Chromosome Engn, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Ctr Agr Resources Res, Inst Genet & Dev Biol, Shijiazhuang 050022, Peoples R China
[4] Shandong Agr Univ, Coll Life Sci, Key Lab Crop Biol, Tai An 271018, Peoples R China
[5] Chinese Acad Agr Sci, Inst Crop Sci, State Key Lab Crop Gene Resources & Breeding, Beijing 100081, Peoples R China
[6] Hebei Normal Univ, Coll Life Sci, Hebei Res Ctr Basic Discipline Cell Biol, Hebei Collaborat Innovat Ctr Cell Signaling & Envi, Shijiazhuang 050024, Peoples R China
[7] JIC CAS, Ctr Excellence Plant & Microbial Sci CEPAMS, Beijing 100101, Peoples R China
基金
北京市自然科学基金;
关键词
drought tolerance; GWAS; root growth; wheat; WUE; TRANSCRIPTION FACTOR; PHOSPHATE-STARVATION; SYSTEM ARCHITECTURE; RICE; YIELD; ASSOCIATION; TRAITS; STRESS; MAIZE; RESPONSES;
D O I
10.1111/jipb.13670
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cultivating high-yield wheat under limited water resources is crucial for sustainable agriculture in semiarid regions. Amid water scarcity, plants activate drought response signaling, yet the delicate balance between drought tolerance and development remains unclear. Through genome-wide association studies and transcriptome profiling, we identified a wheat atypical basic helix-loop-helix (bHLH) transcription factor (TF), TabHLH27-A1, as a promising quantitative trait locus candidate for both relative root dry weight and spikelet number per spike in wheat. TabHLH27-A1/B1/D1 knock-out reduced wheat drought tolerance, yield, and water use efficiency (WUE). TabHLH27-A1 exhibited rapid induction with polyethylene glycol (PEG) treatment, gradually declining over days. It activated stress response genes such as TaCBL8-B1 and TaCPI2-A1 while inhibiting root growth genes like TaSH15-B1 and TaWRKY70-B1 under short-term PEG stimulus. The distinct transcriptional regulation of TabHLH27-A1 involved diverse interacting factors such as TaABI3-D1 and TabZIP62-D1. Natural variations of TabHLH27-A1 influence its transcriptional responses to drought stress, with TabHLH27-A1Hap-II associated with stronger drought tolerance, larger root system, more spikelets, and higher WUE in wheat. Significantly, the excellent TabHLH27-A1Hap-II was selected during the breeding process in China, and introgression of TabHLH27-A1Hap-II allele improved drought tolerance and grain yield, especially under water-limited conditions. Our study highlights TabHLH27-A1's role in balancing root growth and drought tolerance, providing a genetic manipulation locus for enhancing WUE in wheat.
引用
收藏
页码:1295 / 1312
页数:18
相关论文
共 50 条
  • [21] SiEPFs enhance water use efficiency and drought tolerance by regulating stomatal density in foxtail millet(Setaria italica)
    Jianhong Hao
    Xueting Kang
    Lingqian Zhang
    Jiajing Zhang
    Huashuang Wu
    Zidong Li
    Dan Wang
    Min Su
    Shuqi Dong
    Xiaorui Li
    Lulu Gao
    Guanghui Yang
    Xiaoqian Chu
    Xiangyang Yuan
    Jiagang Wang
    Journal of Integrative Agriculture, 2025, 24 (02) : 786 - 789
  • [22] Compound Synthesis or Growth and Development of Roots/Stomata Regulate Plant Drought Tolerance or Water Use Efficiency/Water Uptake Efficiency
    Meng, Lai-Sheng
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2018, 66 (14) : 3595 - 3604
  • [23] Root and leaf traits, water use and drought tolerance of maize genotypes
    Vegh, Krisztina R.
    BIOLOGIA, 2013, 68 (06) : 1123 - 1127
  • [24] Root and leaf traits, water use and drought tolerance of maize genotypes
    Krisztina R. Végh
    Biologia, 2013, 68 : 1123 - 1127
  • [25] Author Correction: Tuning water-use efficiency and drought tolerance in wheat using abscisic acid receptors
    Ryosuke Mega
    Fumitaka Abe
    June-Sik Kim
    Yuuri Tsuboi
    Keisuke Tanaka
    Hisato Kobayashi
    Yoichi Sakata
    Kousuke Hanada
    Hisashi Tsujimoto
    Jun Kikuchi
    Sean R. Cutler
    Masanori Okamoto
    Nature Plants, 2023, 9 : 1001 - 1001
  • [26] Xerophyte-Derived Synthetic Bacterial Communities Enhance Maize Drought Tolerance by Increasing Plant Water Use Efficiency
    Nourashrafeddin, Seyedeh Marzieh
    Ramandi, Alireza
    Seifi, Alireza
    JOURNAL OF PLANT GROWTH REGULATION, 2024, : 4135 - 4150
  • [27] Fungal Endophytes Enhance Wheat and Tomato Drought Tolerance in Terms of Plant Growth and Biochemical Parameters
    Miranda, Victoria
    Silva-Castro, Gloria Andrea
    Ruiz-Lozano, Juan Manuel
    Fracchia, Sebastian
    Garcia-Romera, Inmaculada
    JOURNAL OF FUNGI, 2023, 9 (03)
  • [28] Higher Intercellular CO2 Concentration is Associated with Improved Water Use Efficiency and Drought Tolerance in Bread Wheat
    Aman Ullah
    Abdullah M. Al-Sadi
    Muhammad Farooq
    Gesunde Pflanzen, 2023, 75 : 1679 - 1687
  • [29] Higher Intercellular CO2 Concentration is Associated with Improved Water Use Efficiency and Drought Tolerance in Bread Wheat
    Ullah, Aman
    Al-Sadi, Abdullah M.
    Farooq, Muhammad
    GESUNDE PFLANZEN, 2023, 75 (05): : 1679 - 1687
  • [30] Deficiency of water can enhance root respiration rate of drought-sensitive but not drought-tolerant spring wheat
    Liu, HS
    Li, FM
    Xu, H
    AGRICULTURAL WATER MANAGEMENT, 2004, 64 (01) : 41 - 48