On the Monge-Kantorovich Mass Transfer Problem in Higher Dimensions

被引:0
|
作者
Lu, Xiao Jun [1 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
关键词
Monge-Kantorovich mass transfer; singular variational problem; canonical duality theory; OPTIMAL TRANSPORT; MAPS;
D O I
10.1007/s10114-024-2628-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper mainly investigates the approximation of a global maximizer of the Monge-Kantorovich mass transfer problem in higher dimensions through the approach of nonlinear partial differential equations with Dirichlet boundary. Using an approximation mechanism, the primal maximization problem can be transformed into a sequence of minimization problems. By applying the systematic canonical duality theory, one is able to derive a sequence of analytic solutions for the minimization problems. In the final analysis, the convergence of the sequence to an analytical global maximizer of the primal Monge-Kantorovich problem will be demonstrated.
引用
下载
收藏
页码:1989 / 2004
页数:16
相关论文
共 50 条
  • [31] On action minimizing measures for the Monge-Kantorovich problem
    Luca Granieri
    Nonlinear Differential Equations and Applications NoDEA, 2007, 14 : 125 - 152
  • [32] Optimality conditions for smooth Monge solutions of the Monge-Kantorovich problem
    Levin, VL
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2002, 36 (02) : 114 - 119
  • [33] On regularity of transport density in the Monge-Kantorovich problem
    Buttazzo, G
    Stepanov, E
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (03) : 1044 - 1055
  • [34] On the Application of the Monge-Kantorovich Problem to Image Registration
    Museyko, O.
    Stiglmayr, M.
    Klamroth, K.
    Leugering, G.
    SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (04): : 1068 - 1097
  • [35] On action minimizing measures for the Monge-Kantorovich problem
    Granieri, Luca
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2007, 14 (1-2): : 125 - 152
  • [36] Remarks on the Monge-Kantorovich problem in the discrete setting
    Brezis, Haim
    COMPTES RENDUS MATHEMATIQUE, 2018, 356 (02) : 207 - 213
  • [37] On the Monge-Kantorovich Problem with Additional Linear Constraints
    Zaev, D. A.
    MATHEMATICAL NOTES, 2015, 98 (5-6) : 725 - 741
  • [38] Optimal maps for the multidimensional Monge-Kantorovich problem
    Gangbo, W
    Swiech, A
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1998, 51 (01) : 23 - 45
  • [39] Waveguide Optimization for Dielectric Media Variation Based on the FDTD Method and the Monge-Kantorovich Mass Transfer Problem
    Pyrialakos, Georgios G.
    Kantartzis, Nikolaos V.
    Ohtani, Tadao
    Kanai, Yasushi
    Tsiboukis, T. D.
    2016 IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (CEFC), 2016,
  • [40] A general duality theorem for the Monge-Kantorovich transport problem
    Beiglboeck, Mathias
    Leonard, Christian
    Schachermayer, Walter
    STUDIA MATHEMATICA, 2012, 209 (02) : 151 - 167