Remarks on the Monge-Kantorovich problem in the discrete setting

被引:13
|
作者
Brezis, Haim [1 ,2 ,3 ,4 ]
机构
[1] Rutgers State Univ, Hill Ctr, Dept Math, Busch Campus,110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[3] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
[4] Univ Paris 06, Lab Jacques Louis Lions, 4 Pl Jussieu, F-75252 Paris 05, France
关键词
MONOTONICITY;
D O I
10.1016/j.crma.2017.12.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In Optimal Transport theory, three quantities play a central role: the minimal cost of transport, originally introduced by Monge, its relaxed version introduced by Kantorovich, and a dual formulation also due to Kantorovich. The goal of this Note is to publicize a very elementary, self-contained argument extracted from [9], which shows that all three quantities coincide in the discrete case. (C) 2017 Academie des sciences. Published by Elsevier Masson SAS.
引用
下载
收藏
页码:207 / 213
页数:7
相关论文
共 50 条
  • [1] Remarks on Γ-convergence and the Monge-Kantorovich mass transfer problem
    Pedregal, P
    JOURNAL OF CONVEX ANALYSIS, 2005, 12 (02) : 407 - 415
  • [2] Remarks on Afriat's theorem and the Monge-Kantorovich problem
    Kolesnikov, Alexander V.
    Kudryavtseva, Olga V.
    Nagapetyan, Tigran
    JOURNAL OF MATHEMATICAL ECONOMICS, 2013, 49 (06) : 501 - 505
  • [3] The multistochastic Monge-Kantorovich problem
    Gladkov, Nikita A.
    Kolesnikov, Alexander, V
    Zimin, Alexander P.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 506 (02)
  • [4] Remarks on the stability of mass minimizing currents in the Monge-Kantorovich problem
    Granieri, Luca
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2009, 20 (04): : 527 - 536
  • [5] A Monge-Kantorovich mass transport problem for a discrete distance
    Igbida, N.
    Mazon, J. M.
    Rossi, J. D.
    Toledo, J.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (12) : 3494 - 3534
  • [6] On Monge-Kantorovich problem in the plane
    Shen, Yinfang
    Zheng, Weian
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (5-6) : 267 - 271
  • [7] On the matrix Monge-Kantorovich problem
    Chen, Yongxin
    Gangbo, Wilfrid
    Georgiou, Tryphon T.
    Tannenbaum, Allen
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2020, 31 (04) : 574 - 600
  • [8] A note on Monge-Kantorovich problem
    Feng, Pengbin
    Peng, Xuhui
    STATISTICS & PROBABILITY LETTERS, 2014, 84 : 204 - 211
  • [9] On the Monge-Kantorovich problem and image warping
    Haker, S
    Tannenbaum, A
    MATHEMATICAL METHODS IN COMPUTER VISION, 2003, 133 : 65 - 85
  • [10] Minimizing flows for the Monge-Kantorovich problem
    Angenent, S
    Haker, S
    Tannenbaum, A
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 35 (01) : 61 - 97