On the matrix Monge-Kantorovich problem

被引:15
|
作者
Chen, Yongxin [1 ]
Gangbo, Wilfrid [2 ]
Georgiou, Tryphon T. [3 ,4 ]
Tannenbaum, Allen [2 ]
机构
[1] Georgia Inst Technol, Sch Aerosp Engn, Atlanta, GA 30332 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
[3] Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92717 USA
[4] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Optimal mass transport; quantum mechanics; Wasserstein distance; GEOMETRY;
D O I
10.1017/S0956792519000172
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The classical Monge-Kantorovich (MK) problem as originally posed is concerned with how best to move a pile of soil or rubble to an excavation or fill with the least amount of work relative to some cost function. When the cost is given by the square of the Euclidean distance, one can define a metric on densities called the Wasserstein distance. In this note, we formulate a natural matrix counterpart of the MK problem for positive-definite density matrices. We prove a number of results about this metric including showing that it can be formulated as a convex optimisation problem, strong duality, an analogue of the Poincare-Wirtinger inequality and a Lax-Hopf-Oleinik-type result.
引用
收藏
页码:574 / 600
页数:27
相关论文
共 50 条
  • [1] The multistochastic Monge-Kantorovich problem
    Gladkov, Nikita A.
    Kolesnikov, Alexander, V
    Zimin, Alexander P.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 506 (02)
  • [2] On Monge-Kantorovich problem in the plane
    Shen, Yinfang
    Zheng, Weian
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (5-6) : 267 - 271
  • [3] A note on Monge-Kantorovich problem
    Feng, Pengbin
    Peng, Xuhui
    STATISTICS & PROBABILITY LETTERS, 2014, 84 : 204 - 211
  • [4] On the Monge-Kantorovich problem and image warping
    Haker, S
    Tannenbaum, A
    MATHEMATICAL METHODS IN COMPUTER VISION, 2003, 133 : 65 - 85
  • [5] Minimizing flows for the Monge-Kantorovich problem
    Angenent, S
    Haker, S
    Tannenbaum, A
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 35 (01) : 61 - 97
  • [6] The Monge-Kantorovich Problem for Distributions and Applications
    Bouchitte, Guy
    Buttazzo, Giuseppe
    De Pascale, Luigi
    JOURNAL OF CONVEX ANALYSIS, 2010, 17 (3-4) : 925 - 943
  • [7] A NOTE ON THE MONGE-KANTOROVICH PROBLEM IN THE PLANE
    Xu, Zuo Quan
    Yan, Jia-An
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (02) : 517 - 525
  • [8] On duality for a generalized Monge-Kantorovich problem
    Olubummo, Y
    JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 207 (02) : 253 - 263
  • [9] From the Schrodinger problem to the Monge-Kantorovich problem
    Leonard, Christian
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (04) : 1879 - 1920
  • [10] The Monge-Kantorovich problem: achievements, connections, and perspectives
    Bogachev, V. I.
    Kolesnikov, A. V.
    RUSSIAN MATHEMATICAL SURVEYS, 2012, 67 (05) : 785 - 890