Chow motives of genus one fibrations

被引:0
|
作者
Kawabe, Daiki [1 ]
机构
[1] Tohoku Univ, Res Alliance Ctr Math Sci, Aramaki Aza Aoba 6-3,Aobaku, Sendai 9808578, Japan
关键词
DECOMPOSITION;
D O I
10.1007/s00229-024-01557-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f:X -> C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f: X \rightarrow C$$\end{document} be a genus 1 fibration from a smooth projective surface, i.e. its generic fiber is a regular genus 1 curve. Let j:J -> C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j: J \rightarrow C$$\end{document} be the Jacobian fibration of f. In this paper, we prove that the Chow motives of X and J are isomorphic. As an application, combined with our concomitant work on motives of quasi-elliptic fibrations, we prove Kimura finite-dimensionality for smooth projective surfaces not of general type with geometric genus 0. This generalizes Bloch-Kas-Lieberman's result to arbitrary characteristic.
引用
收藏
页码:635 / 678
页数:44
相关论文
共 50 条