Let f:X -> C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f: X \rightarrow C$$\end{document} be a genus 1 fibration from a smooth projective surface, i.e. its generic fiber is a regular genus 1 curve. Let j:J -> C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j: J \rightarrow C$$\end{document} be the Jacobian fibration of f. In this paper, we prove that the Chow motives of X and J are isomorphic. As an application, combined with our concomitant work on motives of quasi-elliptic fibrations, we prove Kimura finite-dimensionality for smooth projective surfaces not of general type with geometric genus 0. This generalizes Bloch-Kas-Lieberman's result to arbitrary characteristic.