Let f:X -> C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f: X \rightarrow C$$\end{document} be a genus 1 fibration from a smooth projective surface, i.e. its generic fiber is a regular genus 1 curve. Let j:J -> C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j: J \rightarrow C$$\end{document} be the Jacobian fibration of f. In this paper, we prove that the Chow motives of X and J are isomorphic. As an application, combined with our concomitant work on motives of quasi-elliptic fibrations, we prove Kimura finite-dimensionality for smooth projective surfaces not of general type with geometric genus 0. This generalizes Bloch-Kas-Lieberman's result to arbitrary characteristic.
机构:
MIT, Dept Math, Cambridge, MA 02139 USA
FCT UNL, Dept Matemat, P-2829516 Quinta Da Torre, Caparica, Portugal
FCT UNL, CMA, P-2829516 Quinta Da Torre, Caparica, PortugalMIT, Dept Math, Cambridge, MA 02139 USA
机构:
Univ Roma 3, Dipartimento Matemat & Fis, Largo San Leonardo Murialdo 1, I-00146 Rome, Italy
Univ Bonn, Math Inst, Endenicher Allee 60, D-53115 Bonn, GermanyUniv Roma 3, Dipartimento Matemat & Fis, Largo San Leonardo Murialdo 1, I-00146 Rome, Italy