Introducing π-HelixNovo for practical large-scale de novo peptide sequencing

被引:0
|
作者
Yang, Tingpeng [1 ]
Ling, Tianze [2 ,3 ]
Sun, Boyan [3 ]
Liang, Zhendong [4 ,5 ]
Xu, Fan [5 ]
Huang, Xiansong [5 ]
Xie, Linhai [3 ]
He, Yonghong [4 ,5 ]
Li, Leyuan [3 ]
He, Fuchu [3 ]
Wang, Yu [5 ]
Chang, Cheng [3 ,6 ]
机构
[1] Peng Cheng Lab & Tsinghua Shenzhen Int Grad Sch, Shenzhen, Peoples R China
[2] Tsinghua Univ, Beijing, Peoples R China
[3] Natl Ctr Prot Sci Beijing, Beijing, Peoples R China
[4] Tsinghua Shenzhen Int Grad Sch, Shenzhen, Peoples R China
[5] Peng Cheng Lab, Shenzhen 518055, Peoples R China
[6] Natl Ctr Prot Sci Beijing, Dept Biol Big Data, Beijing 102206, Peoples R China
基金
中国国家自然科学基金;
关键词
pi-HelixNovo; complementary spectrum; de novo peptide sequencing; Transformer model; gut metaproteome; antibody and multi-enzyme cleavage peptide; TANDEM-MASS-SPECTROMETRY; DATABASE; SPECTRA; SEARCH; IDENTIFICATION; DISSOCIATION; STRATEGY;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
De novo peptide sequencing is a promising approach for novel peptide discovery, highlighting the performance improvements for the state-of-the-art models. The quality of mass spectra often varies due to unexpected missing of certain ions, presenting a significant challenge in de novo peptide sequencing. Here, we use a novel concept of complementary spectra to enhance ion information of the experimental spectrum and demonstrate it through conceptual and practical analyses. Afterward, we design suitable encoders to encode the experimental spectrum and the corresponding complementary spectrum and propose a de novo sequencing model pi-HelixNovo based on the Transformer architecture. We first demonstrated that pi-HelixNovo outperforms other state-of-the-art models using a series of comparative experiments. Then, we utilized pi-HelixNovo to de novo gut metaproteome peptides for the first time. The results show pi-HelixNovo increases the identification coverage and accuracy of gut metaproteome and enhances the taxonomic resolution of gut metaproteome. We finally trained a powerful pi-HelixNovo utilizing a larger training dataset, and as expected, pi-HelixNovo achieves unprecedented performance, even for peptide-spectrum matches with never-before-seen peptide sequences. We also use the powerful pi-HelixNovo to identify antibody peptides and multi-enzyme cleavage peptides, and pi-HelixNovo is highly robust in these applications. Our results demonstrate the effectivity of the complementary spectrum and take a significant step forward in de novo peptide sequencing.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Introducing π-HelixNovo for practical large-scale de novo peptide sequencing (vol 25, bbae021, 2024)
    Yang, Tingpeng
    Ling, Tianze
    Sun, Boyan
    Liang, Zhendong
    Xu, Fan
    Huang, Xiansong
    Xie, Linhai
    He, Yonghong
    Li, Leyuan
    He, Fuchu
    Wang, Yu
    Chang, Cheng
    [J]. BRIEFINGS IN BIOINFORMATICS, 2024, 25 (03)
  • [2] SWPepNovo: An Efficient De Novo Peptide Sequencing Tool for Large-scale MS/MS Spectra Analysis
    Li, Chuang
    Li, Kenli
    Li, Keqin
    Xie, Xianghui
    Lin, Feng
    [J]. INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2019, 15 (09): : 1787 - 1801
  • [3] Application of de Novo Sequencing to Large-Scale Complex Proteomics Data Sets
    Devabhaktuni, Arun
    Elias, Joshua E.
    [J]. JOURNAL OF PROTEOME RESEARCH, 2016, 15 (03) : 732 - 742
  • [4] A Fast Method for Large-Scale De Novo Peptide and Miniprotein Structure Prediction
    Maupetit, Julien
    Derreumaux, Philippe
    Tuffery, Pierre
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2010, 31 (04) : 726 - 738
  • [5] Precision De Novo Peptide Sequencing Using Mirror Proteases of Ac-LysargiNase and Trypsin for Large-scale Proteomics
    Yang, Hao
    Li, Yan-Chang
    Zhao, Ming-Zhi
    Wu, Fei-Lin
    Wang, Xi
    Xiao, Wei-Di
    Wang, Yi-Hao
    Zhang, Jun-Ling
    Wang, Fu-Qiang
    Xu, Feng
    Zengt, Wen-Feng
    Overall, Christopher M.
    He, Si-Min
    Chi, Hao
    Xu, Ping
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2019, 18 (04) : 773 - 785
  • [6] Large-scale de novo DNA synthesis: technologies and applications
    Kosuri, Sriram
    Church, George M.
    [J]. NATURE METHODS, 2014, 11 (05) : 499 - 507
  • [7] Large-scale de novo DNA synthesis: Technologies and applications
    Kosuri S.
    Church G.M.
    [J]. Nature Methods, 2014, 11 (5) : 499 - 507
  • [8] On peptide de novo sequencing:: a new approach
    Bruni, R
    Gianfranceschi, G
    Koch, G
    [J]. JOURNAL OF PEPTIDE SCIENCE, 2005, 11 (04) : 225 - 234
  • [9] Multiplex De Novo Sequencing of Peptide Antibiotics
    Mohimani, Hosein
    Liu, Wei-Ting
    Yang, Yu-Liang
    Gaudencio, Susana P.
    Fenical, William
    Dorrestein, Pieter C.
    Pevzner, Pavel A.
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2011, 18 (11) : 1371 - 1381
  • [10] De novo peptide sequencing by deep learning
    Ngoc Hieu Tran
    Zhang, Xianglilan
    Xin, Lei
    Shan, Baozhen
    Li, Ming
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (31) : 8247 - 8252