Microstructural and compositional design of Cr2AlC MAX phases and their impact on oxidation resistance

被引:7
|
作者
Azina, Clio [1 ]
Poll, Melina [2 ]
Holzapfel, Damian M. [1 ]
Tailleur, Elodie [3 ]
Zuber, Axel [4 ]
Dubois, Sylvain [4 ]
Eklund, Per [5 ]
Gonzalez-Julian, Jesus [2 ,6 ]
机构
[1] Rhein Westfal TH Aachen, Mat Chem, Kopernikusstr 10, D-52074 Aachen, Germany
[2] Forschungszentrum Julich GmbH, Inst Energy & Climate Res Mat Synth & Proc IEK 1, D-52425 Julich, Germany
[3] Univ Lorraine, CRM2, Vandoeuvre Les Nancy, France
[4] Univ Poitiers, Inst PPRIME, CNRS, ENSMA,UPR 3346,TSA 41126, F-86073 Poitiers 9, France
[5] Linkoping Univ, Thin Film Phys Div, Dept Phys Chem & Biol IFM, SE-58183 Linkoping, Sweden
[6] Rhein Westfal TH Aachen, Inst Mineral Engn GHI, Chair Ceram, Forckenbeckstr 33, D-52074 Aachen, Germany
关键词
MAX phases; Reactive sintering; Microstructural design; Oxidation; HIGH-TEMPERATURE OXIDATION; COATINGS; BEHAVIOR; POWDER;
D O I
10.1016/j.jeurceramsoc.2024.02.037
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The oxidation of MAX phases has largely been investigated, but the effect of secondary phases and microstructure is still unclear. We report on the effect of reactive and non-reactive sintering, and starting powders, on the microstructure, phase formation, and chemical composition of Cr2AlC MAX phases. The grain sizes are shown to be sensitive to both the processing method and the starting powders. Secondary phases were observed mostly in reactively sintered samples as Cr7C3 and AlCr2 were identified, and Al contents varied between 24.4 and 28.0 at %. Finally, the oxidation behavior of the produced MAX phases was evaluated after 60 and 120 min at 1100 degrees C. The Al content, the average grain size of the as-sintered samples, and the presence of secondary phases affected the decomposition of the MAX phase into Cr-carbides in the vicinity of the oxide scale and the composition of the oxide scale, respectively.
引用
收藏
页码:4895 / 4904
页数:10
相关论文
共 50 条
  • [1] Tailoring Magnetic Properties of MAX Phases, a Theoretical Investigation of (Cr2Ti)AlC2 and Cr2AlC
    Wang, Jiemin
    Liu, Zhimou
    Zhang, Haibin
    Wang, Jingyang
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2016, 99 (10) : 3371 - 3375
  • [2] High-Energy Mechanical Grinding to Produce Cr2AlC and Ti2AlC Max Phases
    Solonin, Yu M.
    Savyak, M. P.
    Vasilkivska, M. A.
    Ivchenko, V. I.
    POWDER METALLURGY AND METAL CERAMICS, 2021, 60 (5-6) : 259 - 267
  • [3] High-Energy Mechanical Grinding to Produce Cr2AlC and Ti2AlC Max Phases
    Yu.M. Solonin
    M.P. Savyak
    M.A. Vasilkivska
    V.I. Ivchenko
    Powder Metallurgy and Metal Ceramics, 2021, 60 : 259 - 267
  • [4] Cr2AlC MAX phase foams by replica method
    Karimi, Soheil
    Go, Teresa
    Vassen, Robert
    Gonzalez-Julian, Jesus
    MATERIALS LETTERS, 2019, 240 : 271 - 274
  • [5] Cr2AlC MAX phase: A promising bond coat TBC material with high resistance to high temperature oxidation
    Shamsipoor, A.
    Mousavi, B.
    Razavi, M.
    Bahamirian, M.
    Farvizi, M.
    CERAMICS INTERNATIONAL, 2025, 51 (05) : 6439 - 6447
  • [6] Towards a better understanding of the high-temperature oxidation of MAX phase Cr2AlC
    Zuber, A.
    Gauthier-Brunet, V
    Roger, J.
    Gonzalez-Julian, J.
    Ouisse, T.
    Dubois, S.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2022, 42 (05) : 2089 - 2096
  • [7] Cr2AlC and metals reactivity: Sintering and oxidation
    Zuber, A.
    Gauthier-Brunet, V.
    Dubois, S.
    OPEN CERAMICS, 2024, 17
  • [8] Alumina scale buckling during high temperature oxidation of Cr2AlC MAX Phase
    Zuber, A.
    Parry, G.
    Coupeau, C.
    Renault, P. O.
    Gauthier-Brunet, V.
    Dubois, S.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2023, 43 (16) : 7334 - 7340
  • [9] Oxidation of Cr2AlC at 1300 °C in air
    Lee, D. B.
    Nguyen, Thuan Dinh
    Han, J. H.
    Park, S. W.
    CORROSION SCIENCE, 2007, 49 (10) : 3926 - 3934
  • [10] High-performance Cr2AlC MAX phase coatings for ATF application: Interface design and oxidation mechanism
    Li, Zhongchang
    Wang, Zhenyu
    Ma, Guanshui
    Chen, Rende
    Yang, Wei
    Wang, Kaihang
    Ke, Peiling
    Wang, Aiying
    CORROSION COMMUNICATIONS, 2024, 13 : 27 - 36