Adaptive least-squares finite element methods: Guaranteed upper bounds and convergence in L2 norm of the dual variable

被引:0
|
作者
Ku, Jaeun [1 ]
机构
[1] Oklahoma State Univ, Dept Math, 401 Math Sci, Stillwater, OK 74078 USA
关键词
Adaptive procedure; Least squares; Finite element methods;
D O I
10.1016/j.camwa.2024.03.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider adaptive least -squares finite element methods. First, we develop a guaranteed upper bound for the dual error in the L-2 norm, and this can be used as a stopping criterion for the adaptive procedures. Secondly, based on the a posteriori error estimates for the dual variable, we develop an error indicator that identifies the local area to refine, and establish the convergence of the adaptive procedures based on the Dorfler's marking strategy. Our convergence analysis is valid for the entire range of the bulk parameter 0 < Theta <= 1 and it shows the effect of bulk parameter and reduction factor of elements on the convergence rate. Confirming numerical experiments are provided.
引用
收藏
页码:52 / 60
页数:9
相关论文
共 50 条
  • [1] A short note on plain convergence of adaptive least-squares finite element methods
    Fuhrer, Thomas
    Praetorius, Dirk
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (06) : 1619 - 1632
  • [2] How to prove optimal convergence rates for adaptive least-squares finite element methods
    Bringmann, Philipp
    [J]. JOURNAL OF NUMERICAL MATHEMATICS, 2023, 31 (01) : 43 - 58
  • [3] Convergence of natural adaptive least squares finite element methods
    Carsten Carstensen
    Eun-Jae Park
    Philipp Bringmann
    [J]. Numerische Mathematik, 2017, 136 : 1097 - 1115
  • [4] Convergence of natural adaptive least squares finite element methods
    Carstensen, Carsten
    Park, Eun-Jae
    Bringmann, Philipp
    [J]. NUMERISCHE MATHEMATIK, 2017, 136 (04) : 1097 - 1115
  • [5] CONVERGENCE AND OPTIMALITY OF ADAPTIVE LEAST SQUARES FINITE ELEMENT METHODS
    Carstensen, Carsten
    Park, Eun-Jae
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (01) : 43 - 62
  • [6] ADAPTIVE LEAST-SQUARES MIXED GENERALIZED MULTISCALE FINITE ELEMENT METHODS
    Chen, Fuchen
    Chung, Eric
    Jiang, Lijian
    [J]. MULTISCALE MODELING & SIMULATION, 2018, 16 (02): : 1034 - 1058
  • [7] Finite element methods of least-squares type
    Bochev, PB
    Gunzburger, MD
    [J]. SIAM REVIEW, 1998, 40 (04) : 789 - 837
  • [8] The L2 norm error estimates for the div least-squares method
    Cai, Zhiqiang
    Ku, Jaeun
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (04) : 1721 - 1734
  • [9] Discrete least-squares finite element methods
    Keith, Brendan
    Petrides, Socratis
    Fuentes, Federico
    Demkowicz, Leszek
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 327 : 226 - 255
  • [10] L2-projected least-squares finite element methods for the Stokes equations
    Duan, Huo-Yuan
    Lin, Ping
    Saikrishnan, P.
    Tan, Roger C. E.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (02) : 732 - 752