Cool and data-driven: an exploration of optical cool dwarf chemistry with both data-driven and physical models

被引:0
|
作者
Rains, Adam D. [1 ,2 ]
Nordlander, Thomas [2 ,3 ]
Monty, Stephanie [4 ]
Casey, Andrew R. [3 ,5 ]
Rojas-Ayala, Barbara [6 ]
Zerjal, Marusa [2 ,7 ,8 ]
Ireland, Michael J. [2 ]
Casagrande, Luca [2 ,3 ]
McKenzie, Madeleine [2 ,3 ]
机构
[1] Uppsala Univ, Dept Phys & Astron, Box 516, SE-75120 Uppsala, Sweden
[2] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia
[3] ARC Ctr Excellence Astrophys Three Dimens ASTRO 3D, Canberra, ACT, Australia
[4] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England
[5] Monash Univ, Sch Phys & Astron, Wellington Rd, Clayton, Vic 3800, Australia
[6] Univ Tarapaca, Inst Alta Invest, Casilla 7D, Arica, Chile
[7] Inst Astrofis Canarias, E-38205 Tenerife, Spain
[8] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain
基金
欧洲研究理事会; 美国国家航空航天局; 美国国家科学基金会;
关键词
methods: data analysis; techniques: spectroscopic; stars: fundamental parameters; stars: low-mass; LOW-MASS STARS; NEARBY M DWARFS; CHEMICAL ABUNDANCES; SOLAR NEIGHBORHOOD; MILKY-WAY; PHOTOMETRIC CALIBRATION; FUNDAMENTAL PARAMETERS; EFFECTIVE TEMPERATURE; STELLAR PARAMETERS; PLANET HOSTS;
D O I
10.1093/mnras/stae560
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Detailed chemical studies of F/G/K - or solar-type - stars have long been routine in stellar astrophysics, enabling studies in both Galactic chemodynamics and exoplanet demographics. However, similar understanding of the chemistry of M and late-K dwarfs - the most common stars in the Galaxy - has been greatly hampered both observationally and theoretically by the complex molecular chemistry of their atmospheres. Here, we present a new implementation of the data-driven Cannon model, modelling T-eff, log g, [Fe/H], and [Ti/Fe] trained on low-medium resolution optical spectra (4000-7000 & Aring;) from 103 cool dwarf benchmarks. Alongside this, we also investigate the sensitivity of optical wavelengths to various atomic and molecular species using both data-driven and theoretical means via a custom grid of MARCS synthetic spectra, and make recommendations for where MARCS struggles to reproduce cool dwarf fluxes. Under leave-one-out cross-validation, our Cannon model is capable of recovering T-eff, log g, [Fe/H], and [Ti/Fe] with precisions of 1.4 per cent, +/- 0.04 dex, +/- 0.10 dex, and +/- 0.06 dex respectively, with the recovery of [Ti/Fe] pointing to the as-yet mostly untapped potential of exploiting the abundant - but complex - chemical information within optical spectra of cool stars.
引用
收藏
页码:3171 / 3196
页数:26
相关论文
共 50 条
  • [1] Keeping it cool in a data-driven world
    Smith, Andrew
    [J]. World Pumps, 2023, 2023 (659) : 8 - 12
  • [2] Data-driven Spectroscopy of Cool Stars at High Spectral Resolution
    Behmard, Aida
    Petigura, Erik A.
    Howard, Andrew W.
    [J]. ASTROPHYSICAL JOURNAL, 2019, 876 (01):
  • [3] Data-driven Stellar Models
    Green, Gregory M.
    Rix, Hans-Walter
    Tschesche, Leon
    Finkbeiner, Douglas
    Zucker, Catherine
    Schlafly, Edward F.
    Rybizki, Jan
    Fouesneau, Morgan
    Andrae, Rene
    Speagle, Joshua
    [J]. ASTROPHYSICAL JOURNAL, 2021, 907 (01):
  • [4] Supporting data-driven exploration in NSW
    Gates, Keith
    [J]. Exploration Geophysics, 2019, 2019 (01):
  • [5] Legitimising data-driven models: exemplification of a new data-driven mechanistic modelling framework
    Mount, N. J.
    Dawson, C. W.
    Abrahart, R. J.
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2013, 17 (07) : 2827 - 2843
  • [6] Prediction rigidities for data-driven chemistry
    Chong, Sanggyu
    Bigi, Filippo
    Grasselli, Federico
    Loche, Philip
    Kellner, Matthias
    Ceriotti, Michele
    [J]. FARADAY DISCUSSIONS, 2024,
  • [7] Data-Driven Elucidation of Flavor Chemistry
    Kou, Xingran
    Shi, Peiqin
    Gao, Chukun
    Ma, Peihua
    Xing, Huadong
    Ke, Qinfei
    Zhang, Dachuan
    [J]. Journal of Agricultural and Food Chemistry, 2023, 71 (18): : 6789 - 6802
  • [8] Foundations of data-driven medicinal chemistry
    Bajorath, Juergen
    [J]. FUTURE SCIENCE OA, 2018, 4 (08):
  • [9] Data-Driven Elucidation of Flavor Chemistry
    Kou, Xingran
    Shi, Peiqin
    Gao, Chukun
    Ma, Peihua
    Xing, Huadong
    Ke, Qinfei
    Zhang, Dachuan
    [J]. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2023, 71 (18) : 6789 - 6802
  • [10] DATA-DRIVEN
    Lev-Ram, Michal
    [J]. FORTUNE, 2016, 174 (05) : 76 - 81