Cool and data-driven: an exploration of optical cool dwarf chemistry with both data-driven and physical models

被引:0
|
作者
Rains, Adam D. [1 ,2 ]
Nordlander, Thomas [2 ,3 ]
Monty, Stephanie [4 ]
Casey, Andrew R. [3 ,5 ]
Rojas-Ayala, Barbara [6 ]
Zerjal, Marusa [2 ,7 ,8 ]
Ireland, Michael J. [2 ]
Casagrande, Luca [2 ,3 ]
McKenzie, Madeleine [2 ,3 ]
机构
[1] Uppsala Univ, Dept Phys & Astron, Box 516, SE-75120 Uppsala, Sweden
[2] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia
[3] ARC Ctr Excellence Astrophys Three Dimens ASTRO 3D, Canberra, ACT, Australia
[4] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England
[5] Monash Univ, Sch Phys & Astron, Wellington Rd, Clayton, Vic 3800, Australia
[6] Univ Tarapaca, Inst Alta Invest, Casilla 7D, Arica, Chile
[7] Inst Astrofis Canarias, E-38205 Tenerife, Spain
[8] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain
基金
美国国家航空航天局; 欧洲研究理事会; 美国国家科学基金会;
关键词
methods: data analysis; techniques: spectroscopic; stars: fundamental parameters; stars: low-mass; LOW-MASS STARS; NEARBY M DWARFS; CHEMICAL ABUNDANCES; SOLAR NEIGHBORHOOD; MILKY-WAY; PHOTOMETRIC CALIBRATION; FUNDAMENTAL PARAMETERS; EFFECTIVE TEMPERATURE; STELLAR PARAMETERS; PLANET HOSTS;
D O I
10.1093/mnras/stae560
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Detailed chemical studies of F/G/K - or solar-type - stars have long been routine in stellar astrophysics, enabling studies in both Galactic chemodynamics and exoplanet demographics. However, similar understanding of the chemistry of M and late-K dwarfs - the most common stars in the Galaxy - has been greatly hampered both observationally and theoretically by the complex molecular chemistry of their atmospheres. Here, we present a new implementation of the data-driven Cannon model, modelling T-eff, log g, [Fe/H], and [Ti/Fe] trained on low-medium resolution optical spectra (4000-7000 & Aring;) from 103 cool dwarf benchmarks. Alongside this, we also investigate the sensitivity of optical wavelengths to various atomic and molecular species using both data-driven and theoretical means via a custom grid of MARCS synthetic spectra, and make recommendations for where MARCS struggles to reproduce cool dwarf fluxes. Under leave-one-out cross-validation, our Cannon model is capable of recovering T-eff, log g, [Fe/H], and [Ti/Fe] with precisions of 1.4 per cent, +/- 0.04 dex, +/- 0.10 dex, and +/- 0.06 dex respectively, with the recovery of [Ti/Fe] pointing to the as-yet mostly untapped potential of exploiting the abundant - but complex - chemical information within optical spectra of cool stars.
引用
收藏
页码:3171 / 3196
页数:26
相关论文
共 50 条
  • [21] Improving resilience of sensors in planetary exploration using data-driven models
    Kumar, Dileep
    Dominguez-Pumar, Manuel
    Sayrol-Clols, Elisa
    Torres, Josefina
    Marin, Mercedes
    Gomez-Elvira, Javier
    Mora, Luis
    Navarro, Sara
    Rodriguez-Manfredi, Jose
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (03):
  • [22] The Evolution of Data-Driven Modeling in Organic Chemistry
    Williams, Wendy L.
    Zeng, Lingyu
    Gensch, Tobias
    Sigman, Matthew S.
    Doyle, Abigail G.
    Anslyn, Eric, V
    [J]. ACS CENTRAL SCIENCE, 2021, 7 (10) : 1622 - 1637
  • [23] Advancing data-driven chemistry by beating benchmarks
    Stein, Helge S.
    [J]. TRENDS IN CHEMISTRY, 2022, 4 (08): : 682 - 684
  • [24] Data-Driven Productivity
    Cannell, Thom
    [J]. MANUFACTURING ENGINEERING, 2023, 170 (04): : 72 - 78
  • [25] Data-driven geography
    Miller, Harvey J.
    Goodchild, Michael F.
    [J]. GEOJOURNAL, 2015, 80 (04) : 449 - 461
  • [26] DATA-DRIVEN ORIGINALISM
    Lee, Thomas R.
    Phillips, James C.
    [J]. UNIVERSITY OF PENNSYLVANIA LAW REVIEW, 2019, 167 (02) : 261 - 335
  • [27] Data-Driven Healthcare
    Chang, Hyejung
    [J]. HEALTHCARE INFORMATICS RESEARCH, 2015, 21 (01) : 61 - 62
  • [28] Data-Driven Computing
    Kirchdoerfer, Trenton
    Ortiz, Michael
    [J]. ADVANCES IN COMPUTATIONAL PLASTICITY: A BOOK IN HONOUR OF D. ROGER J. OWEN, 2018, 46 : 165 - 183
  • [29] Data-driven hypotheses
    van Helden, Paul
    [J]. EMBO REPORTS, 2013, 14 (02) : 104 - 104
  • [30] Data-driven Geodynamics
    Ismail-Zadeh, Alik
    [J]. JOURNAL OF THE GEOLOGICAL SOCIETY OF INDIA, 2021, 97 (03) : 223 - 226