Parallelization of Adaptive Quantum Channel Discrimination in the Non-Asymptotic Regime

被引:1
|
作者
Bergh, Bjarne [1 ]
Datta, Nilanjana [1 ]
Salzmann, Robert [1 ]
Wilde, Mark M. [2 ,3 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[2] Louisiana State Univ, Hearne Inst Theoret Phys, Ctr Computat & Technol, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[3] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14850 USA
基金
英国工程与自然科学研究理事会;
关键词
channel discrimination; error exponents; parallel strategies; quantum information theory; shannon theory; adaptive strategies; STRONG CONVERSE; STEINS LEMMA; ASYMPTOTICS; ENTROPY; ERROR; RATES;
D O I
10.1109/TIT.2024.3355929
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We investigate the performance of parallel and adaptive quantum channel discrimination strategies for a finite number of channel uses. It has recently been shown that, in the asymmetric setting with asymptotically vanishing type I error probability, adaptive strategies are asymptotically not more powerful than parallel ones. We extend this result to the non-asymptotic regime with finitely many channel uses, by explicitly constructing a parallel strategy for any given adaptive strategy, and bounding the difference in their performances, measured in terms of the decay rate of the type II error probability per channel use. We further show that all parallel strategies can be optimized over in time polynomial in the number of channel uses, and hence our result can also be used to obtain a poly-time-computable asymptotically tight upper bound on the performance of general adaptive strategies.
引用
下载
收藏
页码:2617 / 2636
页数:20
相关论文
共 50 条
  • [41] On the genericity of some non-asymptotic dynamical properties
    Ageev, ON
    RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (01) : 173 - 174
  • [42] Non-Asymptotic Pure Exploration by Solving Games
    Degenne, Remy
    Koolen, Wouter M.
    Menard, Pierre
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [43] A Tutorial on the Non-Asymptotic Theory of System Identification
    Ziemann, Ingvar
    Tsiamis, Anastasios
    Lee, Bruce
    Jedra, Yassir
    Matni, Nikolai
    Pappas, George J.
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 8921 - 8939
  • [44] Application of non-asymptotic models for the NPP system
    Antonov, AV
    Volnikov, IS
    Dagaev, AV
    SAFETY AND RELIABILITY, VOLS 1 & 2, 1999, : 969 - 974
  • [45] Non-asymptotic analysis of tangent space perturbation
    Kaslovsky, Daniel N.
    Meyer, Francois G.
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2014, 3 (02) : 134 - 187
  • [46] Non-Asymptotic Confidence Sets for Circular Means
    Hotz, Thomas
    Kelma, Florian
    Wieditz, Johannes
    ENTROPY, 2016, 18 (10)
  • [47] Optimal Non-Asymptotic Bounds for the Sparse β Model
    Yang, Xiaowei
    Pan, Lu
    Cheng, Kun
    Liu, Chao
    MATHEMATICS, 2023, 11 (22)
  • [48] About the non-asymptotic behaviour of Bayes estimators
    Birge, Lucien
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2015, 166 : 67 - 77
  • [49] QCD traveling waves at non-asymptotic energies
    Marquet, C
    Peschanski, R
    Soyez, G
    PHYSICS LETTERS B, 2005, 628 (3-4) : 239 - 249
  • [50] Exploring non-asymptotic scattering with Bohmian trajectories
    Stenson, J.
    Stetz, A.
    EUROPEAN JOURNAL OF PHYSICS, 2013, 34 (05) : 1199 - 1208