Parallelization of Adaptive Quantum Channel Discrimination in the Non-Asymptotic Regime

被引:1
|
作者
Bergh, Bjarne [1 ]
Datta, Nilanjana [1 ]
Salzmann, Robert [1 ]
Wilde, Mark M. [2 ,3 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[2] Louisiana State Univ, Hearne Inst Theoret Phys, Ctr Computat & Technol, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[3] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14850 USA
基金
英国工程与自然科学研究理事会;
关键词
channel discrimination; error exponents; parallel strategies; quantum information theory; shannon theory; adaptive strategies; STRONG CONVERSE; STEINS LEMMA; ASYMPTOTICS; ENTROPY; ERROR; RATES;
D O I
10.1109/TIT.2024.3355929
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We investigate the performance of parallel and adaptive quantum channel discrimination strategies for a finite number of channel uses. It has recently been shown that, in the asymmetric setting with asymptotically vanishing type I error probability, adaptive strategies are asymptotically not more powerful than parallel ones. We extend this result to the non-asymptotic regime with finitely many channel uses, by explicitly constructing a parallel strategy for any given adaptive strategy, and bounding the difference in their performances, measured in terms of the decay rate of the type II error probability per channel use. We further show that all parallel strategies can be optimized over in time polynomial in the number of channel uses, and hence our result can also be used to obtain a poly-time-computable asymptotically tight upper bound on the performance of general adaptive strategies.
引用
下载
收藏
页码:2617 / 2636
页数:20
相关论文
共 50 条
  • [21] A non-asymptotic analysis of adaptive TD(λ) learning in wireless sensor networks
    Li, Bing
    Li, Tao
    Liu, Muhua
    Zhu, Junlong
    Zhang, Mingchuan
    Wu, Qingtao
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2022, 18 (07)
  • [22] Non-Asymptotic Entanglement Distillation
    Fang, Kun
    Wang, Xin
    Tomamichel, Marco
    Duan, Runyao
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (10) : 6454 - 6465
  • [23] Asymptotic and Non-asymptotic Results in the Approximation by Bernstein Polynomials
    Adell, Jose A.
    Cardenas-Morales, Daniel
    RESULTS IN MATHEMATICS, 2022, 77 (04)
  • [24] Unequal Message Protection: Asymptotic and Non-Asymptotic Tradeoffs
    Shkel, Yanina Y.
    Tan, Vincent Y. F.
    Draper, Stark C.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (10) : 5396 - 5416
  • [25] A non-asymptotic theory for model selection
    Massart, P
    European Congress of Mathematics, 2005, : 309 - 323
  • [26] On non-asymptotic observation of nonlinear systems
    Reger, Johann
    Ramirez, Hebertt Sira
    Fliess, Michel
    2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8, 2005, : 4219 - 4224
  • [27] Asymptotic and Non-asymptotic Results in the Approximation by Bernstein Polynomials
    José A. Adell
    Daniel Cárdenas-Morales
    Results in Mathematics, 2022, 77
  • [28] Non-asymptotic bounds for autoregressive approximation
    Goldenshluger, A
    Zeevi, A
    1998 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 1998, : 304 - 304
  • [29] A non-asymptotic approach to local modelling
    Roll, J
    Nazin, A
    Ljung, L
    PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 638 - 643
  • [30] Non-asymptotic tests of model performance
    Sylvain Chassang
    Economic Theory, 2009, 41 : 495 - 514