Parallelization of Adaptive Quantum Channel Discrimination in the Non-Asymptotic Regime

被引:1
|
作者
Bergh, Bjarne [1 ]
Datta, Nilanjana [1 ]
Salzmann, Robert [1 ]
Wilde, Mark M. [2 ,3 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[2] Louisiana State Univ, Hearne Inst Theoret Phys, Ctr Computat & Technol, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[3] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14850 USA
基金
英国工程与自然科学研究理事会;
关键词
channel discrimination; error exponents; parallel strategies; quantum information theory; shannon theory; adaptive strategies; STRONG CONVERSE; STEINS LEMMA; ASYMPTOTICS; ENTROPY; ERROR; RATES;
D O I
10.1109/TIT.2024.3355929
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We investigate the performance of parallel and adaptive quantum channel discrimination strategies for a finite number of channel uses. It has recently been shown that, in the asymmetric setting with asymptotically vanishing type I error probability, adaptive strategies are asymptotically not more powerful than parallel ones. We extend this result to the non-asymptotic regime with finitely many channel uses, by explicitly constructing a parallel strategy for any given adaptive strategy, and bounding the difference in their performances, measured in terms of the decay rate of the type II error probability per channel use. We further show that all parallel strategies can be optimized over in time polynomial in the number of channel uses, and hence our result can also be used to obtain a poly-time-computable asymptotically tight upper bound on the performance of general adaptive strategies.
引用
下载
收藏
页码:2617 / 2636
页数:20
相关论文
共 50 条
  • [1] Feedback in the Non-Asymptotic Regime
    Polyanskiy, Yury
    Poor, H. Vincent
    Verdu, Sergio
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (08) : 4903 - 4925
  • [2] Asymptotic Separation Between Adaptive and Non-adaptive Strategies in Quantum Channel Discrimination
    Salek, Farzin
    Hayashi, Masahito
    Winter, Andreas
    2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 1194 - 1199
  • [3] Discrepancy behaviour in the non-asymptotic regime
    Schlier, C
    APPLIED NUMERICAL MATHEMATICS, 2004, 50 (02) : 227 - 238
  • [4] Usefulness of adaptive strategies in asymptotic quantum channel discrimination
    Salek, Farzin
    Hayashi, Masahito
    Winter, Andreas
    PHYSICAL REVIEW A, 2022, 105 (02)
  • [5] Channel Capacity in the Non-asymptotic Regime: Taylor-type Expansion and Computable Benchmarks
    Yang, En-hui
    Meng, Jin
    2012 50TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2012, : 278 - 285
  • [6] Second Law of Entanglement Dynamics for the Non-Asymptotic Regime
    Wilde, Mark M.
    2021 IEEE INFORMATION THEORY WORKSHOP (ITW), 2021,
  • [7] Variable-length coding with feedback in the non-asymptotic regime
    Polyanskiy, Yury
    Poor, H. Vincent
    Verdu, Sergio
    2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 231 - 235
  • [8] New Non-asymptotic Random Channel Coding Theorems
    Yang, En-hui
    Meng, Jin
    2013 INFORMATION THEORY AND APPLICATIONS WORKSHOP (ITA), 2013,
  • [9] Non-asymptotic adaptive prediction in functional linear models
    Brunel, Elodie
    Mas, Andre
    Roche, Angelina
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 143 : 208 - 232
  • [10] ADAPTIVE NON-ASYMPTOTIC CONFIDENCE BALLS IN DENSITY ESTIMATION
    Lerasle, Matthieu
    ESAIM-PROBABILITY AND STATISTICS, 2012, 16 : 61 - 85