A Deep Learning Method to Process Scattered Field Data in Biomedical Imaging System

被引:0
|
作者
Jing Wang
Naike Du
Xiuzhu Ye
机构
[1] SchoolofInformationandElectronics,BeijingInstituteofTechnology
关键词
D O I
暂无
中图分类号
TH77 [医药卫生器械]; TP18 [人工智能理论]; TP391.41 [];
学科分类号
1004 ; 081104 ; 0812 ; 0835 ; 1405 ; 080203 ;
摘要
This paper proposed a deep-learning-based method to process the scattered field data of transmitting antenna,which is unmeasurable in inverse scattering system because the transmitting and receiving antennas are multiplexed.A U-net convolutional neural network(CNN) is used to recover the scattered field data of each transmitting antenna.The numerical results proved that the proposed method can complete the scattered field data at the transmitting antenna which is unable to measure in the actual experiment and can also eliminate the reconstructed error caused by the loss of scattered field data.
引用
收藏
页码:213 / 218
页数:6
相关论文
共 50 条
  • [41] Machine and deep learning for longitudinal biomedical data: a review of methods and applications
    Anna Cascarano
    Jordi Mur-Petit
    Jerónimo Hernández-González
    Marina Camacho
    Nina de Toro Eadie
    Polyxeni Gkontra
    Marc Chadeau-Hyam
    Jordi Vitrià
    Karim Lekadir
    Artificial Intelligence Review, 2023, 56 : 1711 - 1771
  • [42] Building A Deep Learning Classifier for Enhancing a Biomedical Big Data Service
    Ding, Junhua
    Kang, Xiaojun
    Hu, Xin-Hua
    Gudivada, Venkat
    2017 IEEE INTERNATIONAL CONFERENCE ON SERVICES COMPUTING (SCC), 2017, : 140 - 147
  • [43] Deep Learning Based Image Restoration Method of Optical Synthetic Aperture Imaging System
    Tang Ju
    Wang Kaiqiang
    Zhang Wei
    Wu Xiaoyan
    Liu Guodong
    Di Jianglei
    Zhao Jianlin
    ACTA OPTICA SINICA, 2020, 40 (21)
  • [44] Deep and wide field imaging of the Coma cluster:: the data
    Adami, C
    Picat, JP
    Savine, C
    Mazure, A
    West, MJ
    Cuillandre, JC
    Pelló, R
    Biviano, A
    Conselice, CJ
    Durret, F
    Gallagher, JS
    Gregg, M
    Moreau, C
    Ulmer, M
    ASTRONOMY & ASTROPHYSICS, 2006, 451 (03) : 1159 - 1170
  • [45] Deep and wide field imaging of the Coma cluster: The data
    Adami, C.
    Picat, J.P.
    Savine, C.
    Mazure, A.
    West, M.J.
    Cuillandre, J.C.
    Pelló, R.
    Biviano, A.
    Conselice, C.J.
    Durret, F.
    Gallagher III, J.S.
    Gregg, M.
    Moreau, C.
    Ulmer, M.
    Astronomy and Astrophysics, 1600, 451 (03): : 1159 - 1170
  • [46] An effective process design intent inference method of process data via integrating deep learning and grammar parsing
    Huang, Rui
    Han, Zefan
    Fei, Mingtao
    Huang, Bo
    Jiang, Junfeng
    ADVANCED ENGINEERING INFORMATICS, 2023, 58
  • [47] Guest Editorial Advanced Machine Learning Algorithms for Biomedical Data and Imaging
    Tanveer, M.
    Lin, Chin-Teng
    Kumar Singh, Amit
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (10) : 4809 - 4813
  • [48] A Machine Learning-Assisted Inversion Method for Solving Biomedical Imaging Based on Semi-Experimental Data
    Wang, Jing
    Du, Naike
    Yin, Tiantian
    Song, Rencheng
    Xu, Kuiwen
    Sun, Sheng
    Ye, Xiuzhu
    ELECTRONICS, 2023, 12 (12)
  • [49] Imaging from real scattered field data using a linear spectral estimation technique
    Testorf, M
    Fiddy, M
    INVERSE PROBLEMS, 2001, 17 (06) : 1645 - 1658
  • [50] A divergence-free constrained magnetic field interpolation method for scattered data
    Yang, M.
    del-Castillo-Negrete, D.
    Zhang, G.
    Beidler, M. T.
    PHYSICS OF PLASMAS, 2023, 30 (03)