A Deep Learning Method to Process Scattered Field Data in Biomedical Imaging System

被引:0
|
作者
Jing Wang
Naike Du
Xiuzhu Ye
机构
[1] SchoolofInformationandElectronics,BeijingInstituteofTechnology
关键词
D O I
暂无
中图分类号
TH77 [医药卫生器械]; TP18 [人工智能理论]; TP391.41 [];
学科分类号
1004 ; 081104 ; 0812 ; 0835 ; 1405 ; 080203 ;
摘要
This paper proposed a deep-learning-based method to process the scattered field data of transmitting antenna,which is unmeasurable in inverse scattering system because the transmitting and receiving antennas are multiplexed.A U-net convolutional neural network(CNN) is used to recover the scattered field data of each transmitting antenna.The numerical results proved that the proposed method can complete the scattered field data at the transmitting antenna which is unable to measure in the actual experiment and can also eliminate the reconstructed error caused by the loss of scattered field data.
引用
收藏
页码:213 / 218
页数:6
相关论文
共 50 条
  • [21] A New Deep Learning Training Scheme: Application to Biomedical Data
    Cheng, Jianhong
    Zhao, Qichang
    Xu, Lei
    Liu, Jin
    BIOINFORMATICS RESEARCH AND APPLICATIONS, ISBRA 2021, 2021, 13064 : 451 - 459
  • [22] A Stable Method for Estimating the Derivatives of Potential Field Data Based on Deep Learning
    Liu, Yandong
    Wang, Jun
    Li, Weichen
    Li, Fang
    Fang, Yuan
    Meng, Xiaohong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [23] Deep learning based Compton backscatter imaging with scattered X-ray spectrum data: A Monte Carlo study
    Shi, Changrong
    Ouyang, Xujian
    Dong, Minghao
    Shen, Mengni
    Lan, Dini
    Ma, Peiyuan
    Xiao, Yongshun
    RADIATION PHYSICS AND CHEMISTRY, 2024, 225
  • [24] Deep learning and process understanding for data-driven Earth system science
    Markus Reichstein
    Gustau Camps-Valls
    Bjorn Stevens
    Martin Jung
    Joachim Denzler
    Nuno Carvalhais
    Nature, 2019, 566 : 195 - 204
  • [25] Deep learning and process understanding for data-driven Earth system science
    Reichstein, Markus
    Camps-Valls, Gustau
    Stevens, Bjorn
    Jung, Martin
    Denzler, Joachim
    Carvalhais, Nuno
    Prabhat
    NATURE, 2019, 566 (7743) : 195 - 204
  • [26] A novel deep learning method for extracting unspecific biomedical relation
    Bai, Tian
    Wang, Chunyu
    Wang, Ye
    Huang, Lan
    Xing, Fuyong
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (01):
  • [27] The Subaru Deep Field: The optical imaging data
    Kashikawa, N
    Shimasaku, K
    Yasuda, N
    Ajiki, M
    Akiyama, M
    Ando, H
    Aoki, K
    Doi, M
    Fujita, SS
    Furusawa, H
    Hayashino, T
    Iwamuro, F
    Iye, M
    Karoji, H
    Kobayashi, N
    Kodaira, K
    Kodama, T
    Komiyama, Y
    Matsuda, Y
    Miyazaki, S
    Mizumoto, Y
    Morokuma, T
    Motohara, K
    Murayama, T
    Nagao, T
    Nariai, K
    Ohta, K
    Okamura, S
    Ouchi, M
    Sasaki, T
    Sato, Y
    Sekiguchi, K
    Shioya, Y
    Tamura, H
    Taniguchi, Y
    Umemura, M
    Yamada, T
    Yoshida, M
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, 2004, 56 (06) : 1011 - 1023
  • [28] Deep learning-based color transfer biomedical imaging technology
    Bian Y.
    Xing T.
    Deng W.
    Xian Q.
    Qiao H.
    Yu Q.
    Peng J.
    Yang X.
    Jiang Y.
    Wang J.
    Yang S.
    Shen R.
    Shen H.
    Kuang C.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2022, 51 (02):
  • [29] Multi-omics integration method based on attention deep learning network for biomedical data classification
    Gong, Ping
    Cheng, Lei
    Zhang, Zhiyuan
    Meng, Ao
    Li, Enshuo
    Chen, Jie
    Zhang, Longzhen
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 231
  • [30] Deep Learning-Based Electric Field Enhancement Imaging Method for Brain Stroke
    Zuo, Tong
    Jiang, Lihui
    Cheng, Yuhan
    Yu, Xiaolong
    Tao, Xiaohui
    Zhang, Yan
    Cao, Rui
    SENSORS, 2024, 24 (20)