Deep learning-based key-block classification framework for discontinuous rock slopes

被引:0
|
作者
Honghu Zhu [1 ]
Mohammad Azarafza [2 ]
Haluk Akgün [3 ]
机构
[1] School of Earth Sciences and Engineering, Nanjing University
[2] Department of Civil Engineering, Tabriz University
[3] Department of Geological Engineering, Middle East Technical University
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TU45 [岩石(岩体)力学及岩石测试]; TP18 [人工智能理论];
学科分类号
0801 ; 080104 ; 081104 ; 0812 ; 0815 ; 0835 ; 1405 ;
摘要
The key-blocks are the main reason accounting for structural failure in discontinuous rock slopes, and automated identification of these block types is critical for evaluating the stability conditions. This paper presents a classification framework to categorize rock blocks based on the principles of block theory. The deep convolutional neural network(CNN) procedure was utilized to analyze a total of 1240 highresolution images from 130 slope masses at the South Pars Special Zone, Assalouyeh, Southwest Iran.Based on Goodman’s theory, a recognition system has been implemented to classify three types of rock blocks, namely, key blocks, trapped blocks, and stable blocks. The proposed prediction model has been validated with the loss function, root mean square error(RMSE), and mean square error(MSE). As a justification of the model, the support vector machine(SVM), random forest(RF), Gaussian na?ve Bayes(GNB), multilayer perceptron(MLP), Bernoulli na?ve Bayes(BNB), and decision tree(DT) classifiers have been used to evaluate the accuracy, precision, recall, F1-score, and confusion matrix. Accuracy and precision of the proposed model are 0.95 and 0.93, respectively, in comparison with SVM(accuracy = 0.85, precision = 0.85), RF(accuracy = 0.71, precision = 0.71), GNB(accuracy = 0.75,precision = 0.65), MLP(accuracy = 0.88, precision = 0.9), BNB(accuracy = 0.75, precision = 0.69), and DT(accuracy = 0.85, precision = 0.76). In addition, the proposed model reduced the loss function to less than 0.3 and the RMSE and MSE to less than 0.2, which demonstrated a low error rate during processing.
引用
收藏
页码:1131 / 1139
页数:9
相关论文
共 50 条
  • [41] Deep Learning-Based Transfer Learning for Classification of Skin Cancer
    Jain, Satin
    Singhania, Udit
    Tripathy, Balakrushna
    Nasr, Emad Abouel
    Aboudaif, Mohamed K.
    Kamrani, Ali K.
    SENSORS, 2021, 21 (23)
  • [42] Optimizing diabetes classification with a machine learning-based framework
    Feng, Xin
    Cai, Yihuai
    Xin, Ruihao
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [43] Optimizing diabetes classification with a machine learning-based framework
    Xin Feng
    Yihuai Cai
    Ruihao Xin
    BMC Bioinformatics, 24
  • [44] DeepCervix: A deep learning-based framework for the classification of cervical cells using hybrid deep feature fusion techniques
    Rahaman, Md Mamunur
    Li, Chen
    Yao, Yudong
    Kulwa, Frank
    Wu, Xiangchen
    Li, Xiaoyan
    Wang, Qian
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 136
  • [45] A Deep Reinforcement Learning-Based Framework for Content Caching
    Zhong, Chen
    Gursoy, M. Cenk
    Velipasalar, Senem
    2018 52ND ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2018,
  • [46] Deep Learning-Based Object Classification for Spectral Images
    Jacome, Roman
    Lopez, Carlos
    Garcia, Hans
    Arguello, Henry
    APPLICATIONS OF COMPUTATIONAL INTELLIGENCE, COLCACI 2020, 2021, 1346 : 147 - 159
  • [47] Deep learning-based classification models for beehive monitoring
    Berkaya, Selcan Kaplan
    Gunal, Efnan Sora
    Gunal, Serkan
    ECOLOGICAL INFORMATICS, 2021, 64
  • [48] Deep Learning-Based Automated Imaging Classification of ADPKD
    Kim, Youngwoo
    Bu, Seonah
    Tao, Cheng
    Bae, Kyongtae T.
    KIDNEY INTERNATIONAL REPORTS, 2024, 9 (06): : 1802 - 1809
  • [49] A deep learning-based framework for predicting pork preference
    Ko, Eunyoung
    Jeong, Kyungchang
    Oh, Hongseok
    Park, Yunhwan
    Choi, Jungseok
    Lee, Euijong
    CURRENT RESEARCH IN FOOD SCIENCE, 2023, 6
  • [50] Deep Learning-Based Cellular Random Access Framework
    Jang, Han Seung
    Lee, Hoon
    Quek, Tony Q. S.
    Shin, Hyundong
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (11) : 7503 - 7518