Deep learning-based key-block classification framework for discontinuous rock slopes

被引:0
|
作者
Honghu Zhu [1 ]
Mohammad Azarafza [2 ]
Haluk Akgün [3 ]
机构
[1] School of Earth Sciences and Engineering, Nanjing University
[2] Department of Civil Engineering, Tabriz University
[3] Department of Geological Engineering, Middle East Technical University
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TU45 [岩石(岩体)力学及岩石测试]; TP18 [人工智能理论];
学科分类号
0801 ; 080104 ; 081104 ; 0812 ; 0815 ; 0835 ; 1405 ;
摘要
The key-blocks are the main reason accounting for structural failure in discontinuous rock slopes, and automated identification of these block types is critical for evaluating the stability conditions. This paper presents a classification framework to categorize rock blocks based on the principles of block theory. The deep convolutional neural network(CNN) procedure was utilized to analyze a total of 1240 highresolution images from 130 slope masses at the South Pars Special Zone, Assalouyeh, Southwest Iran.Based on Goodman’s theory, a recognition system has been implemented to classify three types of rock blocks, namely, key blocks, trapped blocks, and stable blocks. The proposed prediction model has been validated with the loss function, root mean square error(RMSE), and mean square error(MSE). As a justification of the model, the support vector machine(SVM), random forest(RF), Gaussian na?ve Bayes(GNB), multilayer perceptron(MLP), Bernoulli na?ve Bayes(BNB), and decision tree(DT) classifiers have been used to evaluate the accuracy, precision, recall, F1-score, and confusion matrix. Accuracy and precision of the proposed model are 0.95 and 0.93, respectively, in comparison with SVM(accuracy = 0.85, precision = 0.85), RF(accuracy = 0.71, precision = 0.71), GNB(accuracy = 0.75,precision = 0.65), MLP(accuracy = 0.88, precision = 0.9), BNB(accuracy = 0.75, precision = 0.69), and DT(accuracy = 0.85, precision = 0.76). In addition, the proposed model reduced the loss function to less than 0.3 and the RMSE and MSE to less than 0.2, which demonstrated a low error rate during processing.
引用
下载
收藏
页码:1131 / 1139
页数:9
相关论文
共 50 条
  • [21] Deep-DRX: A framework for deep learning-based discontinuous reception in 5G wireless networks
    Memon, Mudasar Latif
    Maheshwari, Mukesh Kumar
    Shin, Dong Ryeol
    Roy, Abhishek
    Saxena, Navrati
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2019, 30 (03):
  • [22] Deep learning-based Cervical Cancer Classification
    Khoulqi, Ichrak
    Idrissi, Najlae
    2022 INTERNATIONAL CONFERENCE ON TECHNOLOGY INNOVATIONS FOR HEALTHCARE, ICTIH, 2022, : 30 - 33
  • [23] Deep learning-based classification and segmentation for scalpels
    Su, Baiquan
    Zhang, Qingqian
    Gong, Yi
    Xiu, Wei
    Gao, Yang
    Xu, Lixin
    Li, Han
    Wang, Zehao
    Yu, Shi
    Hu, Yida David
    Yao, Wei
    Wang, Junchen
    Li, Changsheng
    Tang, Jie
    Gao, Li
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2023, 18 (05) : 855 - 864
  • [24] Deep learning-based software bug classification
    Meher, Jyoti Prakash
    Biswas, Sourav
    Mall, Rajib
    INFORMATION AND SOFTWARE TECHNOLOGY, 2024, 166
  • [25] Deep Learning-Based Classification of Diabetic Retinopathy
    Huang, Zhenjia
    PROCEEDINGS OF 2023 4TH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE FOR MEDICINE SCIENCE, ISAIMS 2023, 2023, : 371 - 375
  • [26] Deep Learning-Based Water Crystal Classification
    Thi, Hien Doan
    Andres, Frederic
    Quoc, Long Tran
    Emoto, Hiro
    Hayashi, Michiko
    Katsumata, Ken
    Oshide, Takayuki
    APPLIED SCIENCES-BASEL, 2022, 12 (02):
  • [27] Deep Learning-Based Classification of Hyperspectral Data
    Chen, Yushi
    Lin, Zhouhan
    Zhao, Xing
    Wang, Gang
    Gu, Yanfeng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2094 - 2107
  • [28] Deep learning-based classification and segmentation for scalpels
    Baiquan Su
    Qingqian Zhang
    Yi Gong
    Wei Xiu
    Yang Gao
    Lixin Xu
    Han Li
    Zehao Wang
    Shi Yu
    Yida David Hu
    Wei Yao
    Junchen Wang
    Changsheng Li
    Jie Tang
    Li Gao
    International Journal of Computer Assisted Radiology and Surgery, 2023, 18 : 855 - 864
  • [29] A Deep Learning-based Approach for WBC Classification
    Ramyashree, K. S.
    Sharada, B.
    Bhairava, R.
    2024 5TH INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN INFORMATION TECHNOLOGY, ICITIIT 2024, 2024,
  • [30] Classification of crisis-related data on Twitter using a deep learning-based framework
    Nayan Ranjan Paul
    Deepak Sahoo
    Rakesh Chandra Balabantaray
    Multimedia Tools and Applications, 2023, 82 : 8921 - 8941