EffectofrelaxationontheenergeticsandelectronicstructureofcleanAg3PO4(111)surface

被引:0
|
作者
马新国 [1 ,2 ]
严杰 [1 ]
刘娜 [1 ]
祝林 [1 ]
王贝 [1 ]
黄楚云 [1 ,2 ]
吕辉 [1 ,2 ]
机构
[1] School of Science Hubei University of Technology
[2] Hubei Collaborative Innovation Center for High-Efficiency Utilization of Solar Energy Hubei University of
关键词
D O I
暂无
中图分类号
O614.122 [银Ag];
学科分类号
摘要
The effect of relaxation on the energetics and electronic structure of clean Ag3PO4(111) surface has been studied, carried out using first-principles density functional theory(DFT) incorporating the GGACU formalism.After atomic relaxation of the Ag3PO4(111) surface, it is found that O atoms are exposed to the outermost surface,due to an inward displacement of more than 0.06 nm for the two threefold-coordinated Ag atoms and an outward displacement of about 0.004 nm for three O atoms in the sublayer. The atomic relaxations result in a large transfer of surface charges from the outermost layer to the inner layer, and the surface bonds have a rehybridization, which makes the covalence increase and thus causes the surface bonds to shorten. The calculated energy band structures and density of states of the Ag3PO4(111) surface present that the atomic relaxation narrows the valence band width0.15 e V and increases the band gap width 0.26 e V. Meantime, the two surface peaks for the unrelaxed structure disappear at the top of the valence band and the bottom of the conduction band after the relaxed structure, which induces the transformation from a metallic to a semi-conducting characteristic.
引用
收藏
页码:30 / 35
页数:6
相关论文
共 50 条
  • [41] Single Gold Atom Adsorption on the Fe3O4(111) Surface
    Yu, Xiaohu
    Wang, Sheng-Guang
    Li, Yong-Wang
    Wang, Jianguo
    Jiao, Haijun
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (19): : 10632 - 10638
  • [42] Atomic and electronic structure of the CdTe(111)B–(2√3 × 4) orthogonal surface
    V. L. Bekenev
    S. M. Zubkova
    Semiconductors, 2017, 51 : 23 - 33
  • [43] Preparation, characterization and conductivity studies of NaAlSb(PO4)3 and HAlSb(PO4)3
    Anantharamullu, N.
    Velchuri, Radha
    Sarojini, T.
    Madhavi, K.
    Prasad, G.
    Vithal, M.
    INDIAN JOURNAL OF ENGINEERING AND MATERIALS SCIENCES, 2009, 16 (05) : 347 - 354
  • [44] Phase equilibria in the system Rb3PO4-Ba3(PO4)2
    Radominska, E.
    Znamierowska, T.
    Szuszkiewicz, W.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2011, 103 (02) : 761 - 766
  • [45] KNOWLEDGE OF ORTHOPHOSPHATES OF HIGHER ALKALINE-METALS FREE OF WATER - K3PO4, RB3PO4, CS3PO4
    HOPPE, R
    SEYFERT, HM
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES, 1973, B 28 (7-8): : 507 - 508
  • [46] PHASE-TRANSITIONS AND IONIC-CONDUCTION IN 3D SKELETON PHOSPHATES LI3CR2(PO4)3, LI3FE2(PO4)3, NA3CR2(PO4)3, NA3FE2(PO4)3, AG3CR2(PO4)3, AG3FE2(PO4)3, K3CR2(PO4)3, K3FE2(PO4)3
    DYVOIRE, F
    PINTARDSCREPEL, M
    BRETEY, E
    DELAROCHERE, M
    SOLID STATE IONICS, 1983, 9-10 (DEC) : 851 - 857
  • [47] STRUCTURE OF IV-RBHO(PO3)4, IV-RBTM(PO3)4, AND IV-CSER(PO3)4 CRYSTALS
    MAKSIMOVA, SI
    PALKINA, KK
    CHIBISKOVA, NT
    INORGANIC MATERIALS, 1982, 18 (04) : 553 - 558
  • [48] KSn4(PO4)3
    Deng, JF
    Kang, YJ
    Mi, JX
    Li, MR
    Zhao, JT
    Mao, SY
    ACTA CRYSTALLOGRAPHICA SECTION E-CRYSTALLOGRAPHIC COMMUNICATIONS, 2004, 60 : I116 - I117
  • [49] CA(3)(PO4)(4) POLYMORPHISM
    Evdokimov, P. V.
    Putlyaev, V. I.
    Merzlov, D. A.
    Shatalova, T. B.
    Safronova, T. V.
    Klimashina, E. S.
    Churagulov, B. R.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2013, 4 (01): : 48 - 53
  • [50] Surface and luminescent properties of Mg3(PO4)2:Dy3+ phosphors
    Mahajan, Rubby
    Prakash, Ram
    Kumar, Sandeep
    Kumar, Vinay
    Choudhary, R. J.
    Phase, D. M.
    OPTIK, 2021, 225