Multiobjective Optimization in a Quantum Adiabatic Computer

被引:6
|
作者
Baran, Benjamin [1 ]
Villagra, Marcos [1 ]
机构
[1] Univ Nacl Asunci, NIDTEC, Campus Univ, San Lorenzo 2619, Paraguay
关键词
multiobjective optimization; quantum adiabatic computing; combinatorial optimization;
D O I
10.1016/j.entcs.2016.12.003
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this work we propose what we consider the first quantum algorithm for multiobjective combinatorial optimization, at least to the best of our knowledge. The proposed algorithm is based on the adiabatic algorithm of Farhi et al. and it is constructed by mapping a multiobjective combinatorial optimization problem into a Hamiltonian using a convex combination among objectives. We present mathematical properties of the eigenspectrum of the associated Hamiltonian and prove that the quantum adiabatic algorithm can find Pareto-optimal solutions provided certain convex combinations of objectives are used and the underlying multiobjective problem meets certain restrictions.
引用
收藏
页码:27 / 38
页数:12
相关论文
共 50 条
  • [41] Generalized Ramsey numbers through adiabatic quantum optimization
    Ranjbar, Mani
    Macready, William G.
    Clark, Lane
    Gaitan, Frank
    QUANTUM INFORMATION PROCESSING, 2016, 15 (09) : 3519 - 3542
  • [42] An adiabatic quantum optimization for exact cover 3 problem
    张映玉
    许丽莉
    李俊青
    Chinese Physics B, 2014, 23 (03) : 143 - 145
  • [43] An integrated programming and development environment for adiabatic quantum optimization
    Humble, T.S.
    McCaskey, A.J.
    Bennink, R.S.
    Billings, J.J.
    Dazevedo, E.D.
    Sullivan, B.D.
    Klymko, C.F.
    Seddiqi, H.
    Computational Science and Discovery, 2014, 7 (01)
  • [44] Learning adiabatic quantum algorithms over optimization problems
    Davide Pastorello
    Enrico Blanzieri
    Valter Cavecchia
    Quantum Machine Intelligence, 2021, 3
  • [45] De-Signing Hamiltonians for Quantum Adiabatic Optimization
    Crosson, Elizabeth
    Albash, Tameem
    Hen, Itay
    Young, A. P.
    QUANTUM, 2020, 4
  • [46] Probing entanglement in adiabatic quantum optimization with trapped ions
    Hauke, Philipp
    Bonnes, Lars
    Heyl, Markus
    Lechner, Wolfgang
    FRONTIERS IN PHYSICS, 2015, 3 (APR)
  • [47] An adiabatic quantum optimization for exact cover 3 problem
    Zhang Ying-Yu
    Xu Li-Li
    Li Jun-Qing
    CHINESE PHYSICS B, 2014, 23 (03)
  • [48] Exponential optimization of adiabatic quantum-state preparation
    Cugini, Davide
    Nigro, Davide
    Bruno, Mattia
    Gerace, Dario
    PHYSICAL REVIEW RESEARCH, 2025, 7 (01):
  • [49] Learning adiabatic quantum algorithms over optimization problems
    Pastorello, Davide
    Blanzieri, Enrico
    Cavecchia, Valter
    QUANTUM MACHINE INTELLIGENCE, 2021, 3 (01)
  • [50] Generalized Ramsey numbers through adiabatic quantum optimization
    Mani Ranjbar
    William G. Macready
    Lane Clark
    Frank Gaitan
    Quantum Information Processing, 2016, 15 : 3519 - 3542