INFINITE ELEMENT METHOD FOR ELLIPTIC PROBLEMS

被引:0
|
作者
YING, LA
机构
关键词
INFINITE ELEMENT METHOD; ELLIPTIC EQUATIONS; SINGULARITY; INTERFACE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An infinite element method for solving elliptic equations with variable coefficients is presented in this paper. For those solutions which possess singularities, very accurate singular numerical solutions can be obtained with a small scale of computation; besides, it is unnecessary to know the order of singularity of the solutions or the analytic expressions of particular solutions in advance. A numerical example is given in contrast with the finite element method.
引用
收藏
页码:1438 / 1447
页数:10
相关论文
共 50 条
  • [31] A Nonconforming Immersed Finite Element Method for Elliptic Interface Problems
    Lin, Tao
    Sheen, Dongwoo
    Zhang, Xu
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 79 (01) : 442 - 463
  • [32] Virtual element method for semilinear elliptic problems on polygonal meshes
    Adak, D.
    Natarajan, S.
    Natarajan, E.
    APPLIED NUMERICAL MATHEMATICS, 2019, 145 : 175 - 187
  • [33] A finite element method for elliptic problems with rapidly oscillating coefficients
    Wen-Ming He
    Jun-Zhi Cui
    BIT Numerical Mathematics, 2007, 47 : 77 - 102
  • [34] Finite volume element method for monotone nonlinear elliptic problems
    Bi, Chunjia
    Lin, Yanping
    Yang, Min
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (04) : 1097 - 1120
  • [35] A DISCONTINUOUS GALERKIN REDUCED BASIS ELEMENT METHOD FOR ELLIPTIC PROBLEMS
    Antonietti, Paola F.
    Pacciarini, Paolo
    Quarteroni, Alfio
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (02): : 337 - 360
  • [36] A finite element method for elliptic problems with stochastic input data
    Harbrecht, Helmut
    APPLIED NUMERICAL MATHEMATICS, 2010, 60 (03) : 227 - 244
  • [37] AN ADAPTIVE FINITE-ELEMENT METHOD FOR LINEAR ELLIPTIC PROBLEMS
    ERIKSSON, K
    JOHNSON, C
    MATHEMATICS OF COMPUTATION, 1988, 50 (182) : 361 - 383
  • [38] A Nonconforming Extended Virtual Element Method for Elliptic Interface Problems
    Zheng, Xianyan
    Chen, Jinru
    Wang, Feng
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 101 (02)
  • [39] A FINITE ELEMENT METHOD FOR SECOND ORDER NONVARIATIONAL ELLIPTIC PROBLEMS
    Lakkis, Omar
    Pryer, Tristan
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (02): : 786 - 801
  • [40] An extended mixed finite element method for elliptic interface problems
    Can, Pei
    Chen, Jinru
    Wang, Feng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 113 : 148 - 159