Principal Component Regression by Principal Component Selection

被引:12
|
作者
Lee, Hosung [1 ]
Park, Yun Mi [1 ]
Lee, Seokho [1 ]
机构
[1] Hankuk Univ Foreign Studies, Dept Stat, 81 Oedae Ro, Seoul 449791, South Korea
关键词
Biased estimation; dimension reduction; penalized regression; principal component regression; principal component selection;
D O I
10.5351/CSAM.2015.22.2.173
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a selection procedure of principal components in principal component regression. Our method selects principal components using variable selection procedures instead of a small subset of major principal components in principal component regression. Our procedure consists of two steps to improve estimation and prediction. First, we reduce the number of principal components using the conventional principal component regression to yield the set of candidate principal components and then select principal components among the candidate set using sparse regression techniques. The performance of our proposals is demonstrated numerically and compared with the typical dimension reduction approaches (including principal component regression and partial least square regression) using synthetic and real datasets.
引用
下载
收藏
页码:173 / 180
页数:8
相关论文
共 50 条
  • [31] Principal Component Projection Without Principal Component Analysis
    Frostig, Roy
    Musco, Cameron
    Musco, Christopher
    Sidford, Aaron
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [32] Use of chemometrics: Principal Component Analysis (PCA) and principal component regression (PCR) for the authentication of orange juice
    Vaira, S
    Mantovani, VE
    Robles, JC
    Sanchis, JC
    Goicoechea, HC
    ANALYTICAL LETTERS, 1999, 32 (15) : 3131 - 3141
  • [33] Local prediction models by principal component regression
    Xie, YL
    Kalivas, JH
    ANALYTICA CHIMICA ACTA, 1997, 348 (1-3) : 29 - 38
  • [34] Robust correlation scaled principal component regression
    Tahir, Aiman
    Ilyas, Maryam
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 52 (02): : 459 - 486
  • [35] Optical proximity correction with principal component regression
    Gao, Peiran
    Gu, Allan
    Zakhor, Avideh
    OPTICAL MICROLITHOGRAPHY XXI, PTS 1-3, 2008, 6924
  • [36] Principal component-guided sparse regression
    Tay, Jingyi K.
    Friedman, Jerome
    Tibshirani, Robert
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (04): : 1222 - 1257
  • [37] A principal component regression strategy for estimating motion
    Estrela, Vania V.
    Da Silva Bassani, M. H.
    de Assis, J. T.
    PROCEEDINGS OF THE SEVENTH IASTED INTERNATIONAL CONFERENCE ON VISUALIZATION, IMAGING, AND IMAGE PROCESSING, 2007, : 224 - +
  • [38] A NOTE ON COMBINING RIDGE AND PRINCIPAL COMPONENT REGRESSION
    NOMURA, M
    OHKUBO, T
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1985, 14 (10) : 2489 - 2493
  • [39] PRINCIPAL COMPONENT ESTIMATORS IN REGRESSION-ANALYSIS
    CHENG, DC
    IGLARSH, HJ
    REVIEW OF ECONOMICS AND STATISTICS, 1976, 58 (02) : 229 - 234
  • [40] Multiple-shrinkage principal component regression
    George, EI
    Oman, SD
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES D-THE STATISTICIAN, 1996, 45 (01) : 111 - 124