Principal Component Regression by Principal Component Selection

被引:12
|
作者
Lee, Hosung [1 ]
Park, Yun Mi [1 ]
Lee, Seokho [1 ]
机构
[1] Hankuk Univ Foreign Studies, Dept Stat, 81 Oedae Ro, Seoul 449791, South Korea
关键词
Biased estimation; dimension reduction; penalized regression; principal component regression; principal component selection;
D O I
10.5351/CSAM.2015.22.2.173
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a selection procedure of principal components in principal component regression. Our method selects principal components using variable selection procedures instead of a small subset of major principal components in principal component regression. Our procedure consists of two steps to improve estimation and prediction. First, we reduce the number of principal components using the conventional principal component regression to yield the set of candidate principal components and then select principal components among the candidate set using sparse regression techniques. The performance of our proposals is demonstrated numerically and compared with the typical dimension reduction approaches (including principal component regression and partial least square regression) using synthetic and real datasets.
引用
下载
收藏
页码:173 / 180
页数:8
相关论文
共 50 条
  • [1] Genomic selection using principal component regression
    Caroline Du
    Julong Wei
    Shibo Wang
    Zhenyu Jia
    Heredity, 2018, 121 : 12 - 23
  • [2] Genomic selection using principal component regression
    Du, Caroline
    Wei, Julong
    Wang, Shibo
    Jia, Zhenyu
    HEREDITY, 2018, 121 (01) : 12 - 23
  • [3] COMPONENT SELECTION NORMS FOR PRINCIPAL COMPONENTS REGRESSION
    HILL, RC
    FOMBY, TB
    JOHNSON, SR
    COMMUNICATIONS IN STATISTICS PART A-THEORY AND METHODS, 1977, 6 (04): : 309 - 334
  • [4] Logistic Regression Classification by Principal Component Selection
    Kim, Kiho
    Lee, Seokho
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2014, 21 (01) : 61 - 68
  • [5] Evaluation of principal component selection methods to form a global prediction model by principal component regression
    Xie, YL
    Kalivas, JH
    ANALYTICA CHIMICA ACTA, 1997, 348 (1-3) : 19 - 27
  • [6] Principal Component Regression, Ridge Regression and Ridge Principal Component Regression in Spectroscopy Calibration
    Vigneau, E.
    Devaux, M. F.
    Qannari, E. M.
    Robert, P.
    Journal of Chemometrics, 11 (03):
  • [7] Principal component regression, ridge regression and ridge principal component regression in spectroscopy calibration
    Vigneau, E
    Devaux, MF
    Qannari, EM
    Robert, P
    JOURNAL OF CHEMOMETRICS, 1997, 11 (03) : 239 - 249
  • [8] Bayesian principal component regression with data-driven component selection
    Wang, Liuxia
    JOURNAL OF APPLIED STATISTICS, 2012, 39 (06) : 1177 - 1189
  • [9] Component selection and error analysis in principal components regression
    Platt, D
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 215 : U512 - U512
  • [10] Forecast comparison of principal component regression and principal covariate regression
    Heij, Christiaan
    Groenen, Patrick J. F.
    van Dijk, Dick
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (07) : 3612 - 3625