THE PARALLEL COMPLEXITY OF SIMPLE LOGIC PROGRAMS

被引:11
|
作者
AFRATI, F
PAPADIMITRIOU, CH
机构
[1] STANFORD UNIV,STANFORD,CA 94305
[2] UNIV CALIF SAN DIEGO,DEPT COMP SCI,LA JOLLA,CA 92093
关键词
ALA; LNA; THN; ALGORITHMS; LANGUAGES; THEORY; AUTOMATON; NC; P-COMPLETENESS; POLYNOMIAL FRINGE; POLYNOMIAL STOCK; PUSHDOWN;
D O I
10.1145/153724.153752
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We consider logic programs with a single recursive rule, whose right-hand side consists of binary relations forming a chain. We give a complete characterization of all programs of this form that are computable in NC (assuming that P not-equal NC). Our proof uses ideas from automata and language theory, and the combinatories of strings.
引用
收藏
页码:891 / 916
页数:26
相关论文
共 50 条
  • [1] Parallel complexity of simple logic programs
    Afrati, Foto
    Papadimitriou, Christos H.
    [J]. 1600, (40):
  • [2] THE PARALLEL COMPLEXITY OF SINGLE RULE LOGIC PROGRAMS
    AFRATI, F
    [J]. DISCRETE APPLIED MATHEMATICS, 1992, 40 (02) : 107 - 126
  • [3] SOME RESULTS ON THE COMPLEXITY OF EXPLOITING DATA DEPENDENCY IN PARALLEL LOGIC PROGRAMS
    DELCHER, A
    KASIF, S
    [J]. JOURNAL OF LOGIC PROGRAMMING, 1989, 6 (03): : 229 - 241
  • [4] The complexity of revising logic programs
    Greiner, R
    [J]. JOURNAL OF LOGIC PROGRAMMING, 1999, 40 (2-3): : 273 - 298
  • [5] COMPLEXITY OF TRANSFORMED LOGIC PROGRAMS
    STEPANKOVA, O
    STEPANEK, P
    [J]. JOURNAL OF SYMBOLIC LOGIC, 1987, 52 (01) : 343 - 344
  • [6] Complexity of Simple Programs Preface
    Woods, Damien
    Neary, Turlough
    Seda, Anthony K.
    [J]. THEORETICAL COMPUTER SCIENCE, 2011, 412 (1-2) : 1 - 1
  • [7] Variable complexity of simple programs
    Holzer, Markus
    Kutrib, Martin
    [J]. FUNDAMENTA INFORMATICAE, 2006, 74 (04) : 511 - 528
  • [8] Simple Random Logic Programs
    Namasivayam, Gayathri
    Trusczynski, Miroslaw
    [J]. LOGIC PROGRAMMING AND NONMONOTONIC REASONING, PROCEEDINGS, 2009, 5753 : 223 - 235
  • [9] Monadic logic programs and functional complexity
    Universidade do Porto, Porto, Portugal
    [J]. Theor Comput Sci, 1-2 (175-204):
  • [10] Automatic complexity analysis of logic programs
    Debray, Saumya K.
    Lin, Nai-Wei
    [J]. Proceedings of the International Conference on Logic Programming, 1991,