THE PARALLEL COMPLEXITY OF SIMPLE LOGIC PROGRAMS

被引:11
|
作者
AFRATI, F
PAPADIMITRIOU, CH
机构
[1] STANFORD UNIV,STANFORD,CA 94305
[2] UNIV CALIF SAN DIEGO,DEPT COMP SCI,LA JOLLA,CA 92093
关键词
ALA; LNA; THN; ALGORITHMS; LANGUAGES; THEORY; AUTOMATON; NC; P-COMPLETENESS; POLYNOMIAL FRINGE; POLYNOMIAL STOCK; PUSHDOWN;
D O I
10.1145/153724.153752
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We consider logic programs with a single recursive rule, whose right-hand side consists of binary relations forming a chain. We give a complete characterization of all programs of this form that are computable in NC (assuming that P not-equal NC). Our proof uses ideas from automata and language theory, and the combinatories of strings.
引用
下载
收藏
页码:891 / 916
页数:26
相关论文
共 50 条
  • [21] THE COMPLEXITY OF THE EQUIVALENCE PROBLEM FOR SIMPLE PROGRAMS
    GURARI, EM
    IBARRA, OH
    JOURNAL OF THE ACM, 1981, 28 (03) : 535 - 560
  • [22] Tag Systems and the Complexity of Simple Programs
    Neary, Turlough
    Woods, Damien
    CELLULAR AUTOMATA AND DISCRETE COMPLEX SYSTEMS, AUTOMATA 2015, 2015, 9099 : 11 - 16
  • [23] Molecular implementation of simple logic programs
    Tom Ran
    Shai Kaplan
    Ehud Shapiro
    Nature Nanotechnology, 2009, 4 : 642 - 648
  • [24] Molecular implementation of simple logic programs
    Ran, Tom
    Kaplan, Shai
    Shapiro, Ehud
    NATURE NANOTECHNOLOGY, 2009, 4 (10) : 642 - 648
  • [25] A Reasoner for Simple Conceptual Logic Programs
    Heymans, Stijn
    Feier, Cristina
    Eiter, Thomas
    WEB REASONING AND RULE SYSTEMS, PROCEEDINGS, 2009, 5837 : 55 - 70
  • [26] Mind change complexity of learning logic programs
    Jain, S
    Sharma, A
    THEORETICAL COMPUTER SCIENCE, 2002, 284 (01) : 143 - 160
  • [27] Mind change complexity of learning logic programs
    Jain, S
    Sharma, A
    COMPUTATIONAL LEARNING THEORY, 1999, 1572 : 198 - 213
  • [28] Complexity of computing with extended propositional logic programs
    Marek, VW
    Rajasekar, A
    Truszczynski, M
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 1995, 15 (3-4) : 357 - 378
  • [29] ALTERNATION AND THE COMPUTATIONAL COMPLEXITY OF LOGIC PROGRAMS.
    Shapiro, Ehud Y.
    Journal of Logic Programming, 1984, 1 (01): : 19 - 33
  • [30] Abduction from logic programs: Semantics and complexity
    Eiter, T
    Gottlob, G
    Leone, N
    THEORETICAL COMPUTER SCIENCE, 1997, 189 (1-2) : 129 - 177