Parallel complexity of simple logic programs

被引:0
|
作者
Afrati, Foto [1 ]
Papadimitriou, Christos H. [1 ]
机构
[1] Natl Technical Univ of Athens, Athens, Greece
来源
| 1600年 / 40期
关键词
Algorithms - Automata theory - Computation theory - Computational complexity - Computational linguistics - Computer programming languages - Logic programming - Polynomials - Recursive functions - Theorem proving;
D O I
暂无
中图分类号
学科分类号
摘要
We consider logic programs with a single recursive rule, whose right-hand side consists of binary relations forming a chain. We give a complete characterization of all programs of this form that are computable in NC (assuming that P≠NC). Our proof uses ideas from automata and language theory, and the combinatorics of strings.
引用
收藏
相关论文
共 50 条
  • [1] THE PARALLEL COMPLEXITY OF SIMPLE LOGIC PROGRAMS
    AFRATI, F
    PAPADIMITRIOU, CH
    JOURNAL OF THE ACM, 1993, 40 (04) : 891 - 916
  • [2] THE PARALLEL COMPLEXITY OF SINGLE RULE LOGIC PROGRAMS
    AFRATI, F
    DISCRETE APPLIED MATHEMATICS, 1992, 40 (02) : 107 - 126
  • [3] SOME RESULTS ON THE COMPLEXITY OF EXPLOITING DATA DEPENDENCY IN PARALLEL LOGIC PROGRAMS
    DELCHER, A
    KASIF, S
    JOURNAL OF LOGIC PROGRAMMING, 1989, 6 (03): : 229 - 241
  • [4] The complexity of revising logic programs
    Greiner, R
    JOURNAL OF LOGIC PROGRAMMING, 1999, 40 (2-3): : 273 - 298
  • [5] COMPLEXITY OF TRANSFORMED LOGIC PROGRAMS
    STEPANKOVA, O
    STEPANEK, P
    JOURNAL OF SYMBOLIC LOGIC, 1987, 52 (01) : 343 - 344
  • [6] Complexity of Simple Programs Preface
    Woods, Damien
    Neary, Turlough
    Seda, Anthony K.
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (1-2) : 1 - 1
  • [7] Variable complexity of simple programs
    Holzer, Markus
    Kutrib, Martin
    FUNDAMENTA INFORMATICAE, 2006, 74 (04) : 511 - 528
  • [8] Simple Random Logic Programs
    Namasivayam, Gayathri
    Trusczynski, Miroslaw
    LOGIC PROGRAMMING AND NONMONOTONIC REASONING, PROCEEDINGS, 2009, 5753 : 223 - 235
  • [9] Monadic logic programs and functional complexity
    Universidade do Porto, Porto, Portugal
    Theor Comput Sci, 1-2 (175-204):
  • [10] Automatic complexity analysis of logic programs
    Debray, Saumya K.
    Lin, Nai-Wei
    Proceedings of the International Conference on Logic Programming, 1991,