SEQUENTIAL TEST FOR MEAN OF AN INVERSE GAUSSIAN DISTRIBUTION

被引:0
|
作者
LOMBARD, F [1 ]
机构
[1] RAND AFRIKAANS UNIV,JOHANNESBURG,SOUTH AFRICA
关键词
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:107 / 115
页数:9
相关论文
共 50 条
  • [21] USE OF THE LIKELIHOOD RATIO TEST ON THE INVERSE GAUSSIAN DISTRIBUTION
    DAVIS, AS
    AMERICAN STATISTICIAN, 1980, 34 (02): : 108 - 110
  • [22] OPTIMUM TEST PROCEDURES FOR MEAN OF FIRST PASSAGE TIME DISTRIBUTION IN BROWNIAN-MOTION WITH POSITIVE DRIFT (INVERSE GAUSSIAN DISTRIBUTION)
    CHHIKARA, RS
    FOLKS, JL
    TECHNOMETRICS, 1976, 18 (02) : 189 - 193
  • [23] Sequential Minimum Risk Point Estimation of the Parameters of an Inverse Gaussian Distribution
    Chaturvedi A.
    Bapat S.R.
    Joshi N.
    Joshi, Neeraj (stats.joshi@gmail.com), 1600, Taylor and Francis Ltd. (39): : 20 - 40
  • [24] Multi-stage point estimation of the mean of an inverse Gaussian distribution
    Chaturvedi, Ajit
    Bapat, Sudeep R.
    Joshi, Neeraj
    SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS, 2019, 38 (01): : 1 - 25
  • [25] Variable selection for joint mean and dispersion models of the inverse Gaussian distribution
    Wu, Liucang
    Li, Huiqiong
    METRIKA, 2012, 75 (06) : 795 - 808
  • [26] CSCC for mean of an inverse Gaussian distribution under type I censoring
    Shankar, Gauri
    Joseph, S.
    Microelectronics Reliability, 1996, 36 (09): : 1309 - 1311
  • [27] Wald Intervals via Profile Likelihood for the Mean of the Inverse Gaussian Distribution
    Srisuradetchai, Patchanok
    Niyomdecha, Ausaina
    Phaphan, Wikanda
    SYMMETRY-BASEL, 2024, 16 (01):
  • [28] CSCC for mean of an inverse Gaussian distribution under type I censoring
    Shankar, G
    Joseph, S
    MICROELECTRONICS AND RELIABILITY, 1996, 36 (09): : 1309 - 1311
  • [29] Variable selection for joint mean and dispersion models of the inverse Gaussian distribution
    Liucang Wu
    Huiqiong Li
    Metrika, 2012, 75 : 795 - 808
  • [30] A comparison of estimators for the mean in the inverse Gaussian distribution with a known coefficient of variation
    Kim, K
    Choi, B
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2002, 72 (12) : 899 - 908