Invariant subpixel target identification in hyperspectral imagery

被引:17
|
作者
Thai, B [1 ]
Healey, G [1 ]
机构
[1] Univ Calif Irvine, Comp Vis Lab, Irvine, CA 92697 USA
关键词
subpixel detection; hyperspectral imagery;
D O I
10.1117/12.353034
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
We present an algorithm for subpixel material identification that is invariant to the illumination and atmospheric conditions. The target material spectral reflectance is the only prior information required by the algorithm. A target material subspace model is constructed from the reflectance using a physical model and a background subspace model is estimated directly from the image. These two subspace models are used to compute maximum likelihood estimates for the target material component and the background component at each image pixel. These estimates form the basis of a generalized likelihood ratio test for subpixel material identification. We present experimental results using HYDICE imagery that demonstrate the utility of the algorithm for subpixel material identification under varying illumination and atmospheric conditions.
引用
下载
收藏
页码:14 / 24
页数:11
相关论文
共 50 条
  • [1] Invariant subpixel material detection in hyperspectral imagery
    Thai, B
    Healey, G
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (03): : 599 - 608
  • [2] Unsupervised target subpixel detection in hyperspectral imagery
    Chang, CI
    Du, Q
    Chiang, SS
    Heinz, DC
    Ginsberg, IW
    ALGORITHMS FOR MULTISPECTRAL, HYPERSPECTRAL AND ULTRASPECTRAL IMAGERY VII, 2001, 4381 : 370 - 379
  • [3] Constrained subpixel target detection for hyperspectral imagery
    Chang, CI
    Heinz, DC
    SIGNAL AND DATA PROCESSING OF SMALL TARGETS 2000, 2000, 4048 : 35 - 45
  • [4] Discrimination and identification for subpixel targets in hyperspectral imagery
    Chang, CI
    Liu, WM
    Chang, CC
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 3339 - 3342
  • [5] Evaluating Subpixel Target Detection Algorithms in Hyperspectral Imagery
    Cohen, Yuval
    August, Yitzhak
    Blumberg, Dan G.
    Rotman, Stanley R.
    JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2012, 2012
  • [6] EDGE IMPACT ON SUBPIXEL TARGET DETECTION IN HYPERSPECTRAL IMAGERY
    Jivin, Ilya
    Rotman, Stanley R.
    2008 IEEE 25TH CONVENTION OF ELECTRICAL AND ELECTRONICS ENGINEERS IN ISRAEL, VOLS 1 AND 2, 2008, : 100 - 104
  • [7] Automated target recognition in hyperspectral imagery using subpixel spatial information
    Sentlinger, GI
    Davenport, MR
    Ardouin, JP
    AUTOMATIC TARGET RECOGNITION XIII, 2003, 5094 : 266 - 277
  • [8] Spectral Radiance Modeling and Bayesian Model Averaging for Longwave Infrared Hyperspectral Imagery and Subpixel Target Identification
    Rankin, Blake M.
    Meola, Joseph
    Eismann, Michael T.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (12): : 6726 - 6735
  • [9] Subpixel mapping of raw hyperspectral imagery
    Wang, Liguo
    Zhao, ChunHui
    Zhang, Ye
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2007, 14 : 1770 - 1773
  • [10] Target-constrained interference-minimized filter for subpixel target detection in hyperspectral imagery
    Ren, HS
    Chang, CI
    IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 1545 - 1547