NG-DBSCAN: Scalable Density-Based Clustering for Arbitrary Data

被引:2
|
作者
Lulli, Alessandro [1 ,2 ]
Dell'Amico, Matteo [3 ]
Michiardi, Pietro [4 ]
Ricci, Laura [1 ,2 ]
机构
[1] Univ Pisa, I-56100 Pisa, Italy
[2] CNR, ISTI, Pisa, Italy
[3] Symantec Res Labs, Paris, France
[4] EURECOM, Campus SophiaTech, Biot, France
来源
PROCEEDINGS OF THE VLDB ENDOWMENT | 2016年 / 10卷 / 03期
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present NG-DBSCAN, an approximate density-based clustering algorithm that operates on arbitrary data and any symmetric distance measure. The distributed design of our algorithm makes it scalable to very large datasets; its approximate nature makes it fast, yet capable of producing high quality clustering results. We provide a detailed overview of the steps of NG-DBSCAN, together with their analysis. Our results, obtained through an extensive experimental campaign with real and synthetic data, substantiate our claims about NG-DBSCAN's performance and scalability.
引用
收藏
页码:157 / 168
页数:12
相关论文
共 50 条
  • [41] RNN-DBSCAN: A Density-Based Clustering Algorithm Using Reverse Nearest Neighbor Density Estimates
    Bryant, Avory
    Cios, Krzysztof
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2018, 30 (06) : 1109 - 1121
  • [42] An efficient and scalable density-based Clustering algorithm for datasets with complex structures
    Lv, Yinghua
    Ma, Tinghuai
    Tang, Meili
    Cao, Jie
    Tian, Yuan
    Al-Dhelaan, Abdullah
    Al-Rodhaan, Mznah
    NEUROCOMPUTING, 2016, 171 : 9 - 22
  • [43] Scalable density-based clustering with quality guarantees using random projections
    Johannes Schneider
    Michail Vlachos
    Data Mining and Knowledge Discovery, 2017, 31 : 972 - 1005
  • [44] Scalable density-based clustering with quality guarantees using random projections
    Schneider, Johannes
    Vlachos, Michail
    DATA MINING AND KNOWLEDGE DISCOVERY, 2017, 31 (04) : 972 - 1005
  • [45] Novel Density-Based Clustering Algorithms for Uncertain Data
    Zhang, Xianchao
    Liu, Han
    Zhang, Xiaotong
    Liu, Xinyue
    PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2014, : 2191 - 2197
  • [46] Efficient layered density-based clustering of categorical data
    Andreopoulos, Bill
    An, Aijun
    Wang, Xiaogang
    Labudde, Dirk
    JOURNAL OF BIOMEDICAL INFORMATICS, 2009, 42 (02) : 365 - 376
  • [47] A density-based clustering algorithm for the CYGNO data analysis
    Baracchini, E.
    Benussi, L.
    Bianco, S.
    Capoccia, C.
    Caponero, M.
    Cavoto, G.
    Cortez, A.
    Costa, I. A.
    Di Marco, E.
    D'Imperio, G.
    Dho, G.
    Lacoangeli, F.
    Maccarrone, G.
    Marafini, M.
    Mazzitelli, G.
    Messina, A.
    Nobrega, R. A.
    Orlandi, A.
    Paoletti, E.
    Passamonti, L.
    Petrucci, F.
    Piccolo, D.
    Pierluigi, D.
    Pinci, D.
    Renga, F.
    Rosatelli, F.
    Russo, A.
    Saviano, G.
    Tesauroc, R.
    Tomassini, S.
    JOURNAL OF INSTRUMENTATION, 2020, 15 (12)
  • [48] Density-Based Clustering of Data Streams at Multiple Resolutions
    Wan, Li
    Ng, Wee Keong
    Dang, Xuan Hong
    Yu, Philip S.
    Zhang, Kuan
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2009, 3 (03)
  • [49] Density-based clustering on massive mobile communication data
    Liu, YF
    Tang, SW
    Yang, DQ
    Chen, Y
    Wang, TJ
    Ma, S
    7TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL XI, PROCEEDINGS: COMMUNICATION, NETWORK AND CONTROL SYSTEMS, TECHNOLOGIES AND APPLICATIONS: II, 2003, : 251 - 254
  • [50] On Density-Based Data Streams Clustering Algorithms: A Survey
    Amineh Amini
    Teh Ying Wah
    Hadi Saboohi
    Journal of Computer Science and Technology, 2014, 29 : 116 - 141