NG-DBSCAN: Scalable Density-Based Clustering for Arbitrary Data

被引:2
|
作者
Lulli, Alessandro [1 ,2 ]
Dell'Amico, Matteo [3 ]
Michiardi, Pietro [4 ]
Ricci, Laura [1 ,2 ]
机构
[1] Univ Pisa, I-56100 Pisa, Italy
[2] CNR, ISTI, Pisa, Italy
[3] Symantec Res Labs, Paris, France
[4] EURECOM, Campus SophiaTech, Biot, France
来源
PROCEEDINGS OF THE VLDB ENDOWMENT | 2016年 / 10卷 / 03期
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present NG-DBSCAN, an approximate density-based clustering algorithm that operates on arbitrary data and any symmetric distance measure. The distributed design of our algorithm makes it scalable to very large datasets; its approximate nature makes it fast, yet capable of producing high quality clustering results. We provide a detailed overview of the steps of NG-DBSCAN, together with their analysis. Our results, obtained through an extensive experimental campaign with real and synthetic data, substantiate our claims about NG-DBSCAN's performance and scalability.
引用
收藏
页码:157 / 168
页数:12
相关论文
共 50 条
  • [31] Anytime density-based clustering of complex data
    Mai, Son T.
    He, Xiao
    Feng, Jing
    Plant, Claudia
    Boehm, Christian
    KNOWLEDGE AND INFORMATION SYSTEMS, 2015, 45 (02) : 319 - 355
  • [32] Density-based hierarchical clustering for streaming data
    Tu, Q.
    Lu, J. F.
    Yuan, B.
    Tang, J. B.
    Yang, J. Y.
    PATTERN RECOGNITION LETTERS, 2012, 33 (05) : 641 - 645
  • [33] Hierarchical density-based clustering of uncertain data
    Kriegel, HP
    Pfeifle, M
    Fifth IEEE International Conference on Data Mining, Proceedings, 2005, : 689 - 692
  • [34] Density-based clustering for exploration of analytical data
    M. Daszykowski
    B. Walczak
    D. L. Massart
    Analytical and Bioanalytical Chemistry, 2004, 380 : 370 - 372
  • [35] Landmark FN-DBSCAN: An Efficient Density-Based Clustering Algorithm with Fuzzy Neighborhood
    Liu, Hao
    Oyama, Satoshi
    Kurihara, Masahito
    Sato, Haruhiko
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2013, 17 (01) : 60 - 73
  • [36] Constrained Density-Based Spatial Clustering of Applications with Noise (DBSCAN) using hyperparameter optimization
    Kim, Jongwon
    Lee, Hyeseon
    Ko, Young Myoung
    KNOWLEDGE-BASED SYSTEMS, 2024, 303
  • [37] MR-DBSCAN: An Efficient Parallel Density-based Clustering Algorithm using MapReduce
    He, Yaobin
    Tan, Haoyu
    Luo, Wuman
    Mao, Huajian
    Ma, Di
    Feng, Shengzhong
    Fan, Jianping
    2011 IEEE 17TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS), 2011, : 473 - 480
  • [38] K-DBSCAN: An efficient density-based clustering algorithm supports parallel computing
    Deng C.
    Song J.
    Cai S.
    Sun R.
    Shi Y.
    Hao S.
    International Journal of Simulation and Process Modelling, 2018, 13 (05) : 496 - 505
  • [39] Density-based clustering
    Campello, Ricardo J. G. B.
    Kroeger, Peer
    Sander, Jorg
    Zimek, Arthur
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 10 (02)
  • [40] Density-based clustering
    Kriegel, Hans-Peter
    Kroeger, Peer
    Sander, Joerg
    Zimek, Arthur
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2011, 1 (03) : 231 - 240