PROJECTED HARTREE-FOCK AND HARTREE-FOCK-BOGOLIUBOV SPECTRA FOR EVEN TI, CR, AND FE ISOTOPES

被引:11
|
作者
CHANDRA, H
RUSTGI, ML
机构
[1] SUNY, NUCL PHYS LAB, BUFFALO, NY 14214 USA
[2] SUNY, DEPT PHYS, BUFFALO, NY 14214 USA
来源
PHYSICAL REVIEW C | 1973年 / 7卷 / 01期
关键词
D O I
10.1103/PhysRevC.7.180
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
引用
收藏
页码:180 / 190
页数:11
相关论文
共 50 条
  • [21] SYMMETRY-CONSERVING HARTREE-FOCK-BOGOLIUBOV THEORY .2. NUMBER-PROJECTED CRANKED HARTREE-FOCK-BOGOLIUBOV CALCULATIONS IN THE RARE-EARTH REGION
    EGIDO, JL
    RING, P
    [J]. NUCLEAR PHYSICS A, 1982, 388 (01) : 19 - 36
  • [22] Hartree-Fock-Bogoliubov calculation of ground state properties of even-even and odd Mo and Ru isotopes
    El Bassem, Y.
    Oulne, M.
    [J]. NUCLEAR PHYSICS A, 2017, 957 : 22 - 32
  • [23] Nuclear structure investigation of even-even and odd Pb isotopes by using the Hartree-Fock-Bogoliubov method
    El Bassem, Y.
    Oulne, M.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2017, 26 (12)
  • [24] HARTREE-FOCK AND HARTREE-BOGOLIUBOV EQUATIONS WITH EXACT SYMMETRIES
    FRIEDERICH, A
    [J]. ZEITSCHRIFT FUR PHYSIK, 1969, 223 (02): : 152 - +
  • [25] HARTREE-FOCK-BOGOLIUBOV PREDICTIONS FOR SHAPE ISOMERISM IN NONFISSILE EVEN-EVEN NUCLEI
    GIROD, M
    DELAROCHE, JP
    GOGNY, D
    BERGER, JF
    [J]. PHYSICAL REVIEW LETTERS, 1989, 62 (21) : 2452 - 2455
  • [26] HARTREE-FOCK-BOGOLIUBOV THEORY WITHOUT QUASIPARTICLE VACUA
    ROSENSTEEL, G
    [J]. PHYSICAL REVIEW A, 1981, 23 (06): : 2794 - 2801
  • [27] Modified Hartree-Fock-Bogoliubov theory at finite temperature
    Dang, ND
    Arima, A
    [J]. PHYSICAL REVIEW C, 2003, 68 (01):
  • [28] Hartree-Fock-Bogoliubov theory of dipolar Fermi gases
    Zhao, Cheng
    Jiang, Lei
    Liu, Xunxu
    Liu, W. M.
    Zou, Xubo
    Pu, Han
    [J]. PHYSICAL REVIEW A, 2010, 81 (06):
  • [29] Hartree-Fock-Bogoliubov theory of polarized Fermi systems
    Bertsch, George
    Dobaczewski, Jacek
    Nazarewicz, Witold
    Pei, Junchen
    [J]. PHYSICAL REVIEW A, 2009, 79 (04):
  • [30] Application of the gradient method to Hartree-Fock-Bogoliubov theory
    Robledo, L. M.
    Bertsch, G. F.
    [J]. PHYSICAL REVIEW C, 2011, 84 (01):