MANIFOLD LEARNING BASED ON KERNEL DENSITY ESTIMATION

被引:0
|
作者
Kuleshov, A. P. [1 ]
Bernstein, A., V [2 ,3 ,6 ]
Yanovich, Yu A. [2 ,3 ,4 ,5 ,6 ,7 ]
机构
[1] Skolkovo Inst Sci & Technol, Terr Innovat Ctr Skolkovo, Ul Nobelya 3, Moscow 143026, Russia
[2] Skolkovo Inst Sci & Technol, Terr Innovat Ctr Skolkovo, Ctr Computat & Data Intens Sci & Engn, Ul Nobelya 3, Moscow 143026, Russia
[3] Skolkovo Inst Sci & Technol, Terr Innovat Ctr Skolkovo, Intelligent Data Anal & Predict Modeling Lab, Ul Nobelya 3, Moscow 143026, Russia
[4] Skolkovo Inst Sci & Technol, Terr Innovat Ctr Skolkovo, Phys & Math Sci, Ul Nobelya 3, Moscow 143026, Russia
[5] Skolkovo Inst Sci & Technol, Terr Innovat Ctr Skolkovo, Fac Comp Sci, Ul Nobelya 3, Moscow 143026, Russia
[6] Russian Acad Sci, Kharkevich Inst Informat Transmiss Problems, Bolshoy Karetny Pereulok 19,Str 1, Moscow 127051, Russia
[7] Natl Res Univ, Higher Sch Econ, Ul Myasnitskaya 20, Moscow 101000, Russia
基金
俄罗斯科学基金会;
关键词
dimensionality reduction; manifold learning; manifold valued data; density estimation on manifold;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of unknown high-dimensional density estimation has been considered. It has been suggested that the support of its measure is a low-dimensional data manifold. This problem arises in many data mining tasks. The paper proposes a new geometrically motivated solution to the problem in the framework of manifold learning, including estimation of an unknown support of the density. Firstly, the problem of tangent bundle manifold learning has been solved, which resulted in the transformation of high-dimensional data into their low-dimensional features and estimation of the Riemann tensor on the data manifold. Following that, an unknown density of the constructed features has been estimated with the use of the appropriate kernel approach. Finally, using the estimated Riemann tensor, the final estimator of the initial density has been constructed.
引用
收藏
页码:327 / 338
页数:12
相关论文
共 50 条
  • [41] KERNEL ESTIMATION OF THE DENSITY OF A STATISTIC
    SHERMAN, M
    [J]. STATISTICS & PROBABILITY LETTERS, 1994, 21 (01) : 29 - 36
  • [42] Complementary Kernel Density Estimation
    Miao, Xu
    Rahimi, Ali
    Rao, Rajesh P. N.
    [J]. PATTERN RECOGNITION LETTERS, 2012, 33 (10) : 1381 - 1387
  • [43] Robust Kernel Density Estimation
    Kim, JooSeuk
    Scott, Clayton D.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2012, 13 : 2529 - 2565
  • [44] Filtered kernel density estimation
    Marchette, David
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2009, 1 (01): : 106 - 109
  • [45] Isolation Kernel Density Estimation
    Ting, Kai Ming
    Washio, Takashi
    Wells, Jonathan R.
    Zhang, Hang
    [J]. 2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021), 2021, : 619 - 628
  • [46] Kernel density estimation on the torus
    Di Marzio, Marco
    Panzera, Agnese
    Taylor, Charles C.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (06) : 2156 - 2173
  • [47] ON KERNEL DENSITY DERIVATIVE ESTIMATION
    JONES, MC
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1994, 23 (08) : 2133 - 2139
  • [48] Robust kernel density estimation
    Kim, JooSeuk
    Scott, Clayton
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 3381 - 3384
  • [49] Reweighted kernel density estimation
    Hazelton, Martin L.
    Turlach, Berwin A.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (06) : 3057 - 3069
  • [50] Adaptive kernel density estimation
    Van Kerm, Philippe
    [J]. STATA JOURNAL, 2003, 3 (02): : 148 - 156