Applying Multiple Imputation with Geostatistical Models to Account for Item Nonresponse in Environmental Data

被引:7
|
作者
Munoz, Breda [1 ]
Lesser, Virginia M. [2 ,3 ]
Smith, Ruben A. [4 ]
机构
[1] RTI Int, RTP, Durham, NC 27709 USA
[2] Oregon State Univ, Survey Res Ctr, Corvallis, OR 97331 USA
[3] Oregon State Univ, Stat, Corvallis, OR 97331 USA
[4] Oregon State Univ, Corvallis, OR 97331 USA
关键词
Environmental surveys; missing data; nonresponse;
D O I
10.22237/jmasm/1272687960
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Methods proposed to solve the missing data problem in estimation procedures should consider the type of missing data, the missing data mechanism, the sampling design and the availability of auxiliary variables correlated with the process of interest. This article explores the use of geostatistical models with multiple imputation to deal with missing data in environmental surveys. The method is applied to the analysis of data generated from a probability survey to estimate Coho salmon abundance in streams located in western Oregon watersheds.
引用
收藏
页码:274 / 286
页数:13
相关论文
共 50 条
  • [31] Nested Logit Models for Multiple-Choice Item Response Data
    Suh, Youngsuk
    Bolt, Daniel M.
    PSYCHOMETRIKA, 2010, 75 (03) : 454 - 473
  • [32] Nested Logit Models for Multiple-Choice Item Response Data
    Youngsuk Suh
    Daniel M. Bolt
    Psychometrika, 2010, 75 : 454 - 473
  • [33] Explanatory Item Response Models for Dyadic Data from Multiple Groups
    Murphy, James P.
    SOCIOLOGICAL METHODOLOGY, VOL 51, 2021, 51 (01): : 112 - 145
  • [34] Multiple imputation to account for missing data in analyzing a large national cohort of mothers and their healthy term infants
    Spino, C
    Finch, S
    Stoltz, R
    Wasserman, R
    McCormick, M
    Bernstein, H
    PEDIATRIC RESEARCH, 2004, 55 (04) : 176A - 176A
  • [35] A comparison of multiple imputation strategies for handling missing data in multi-item scales: Guidance for longitudinal studies
    Mainzer, Rheanna
    Apajee, Jemishabye
    Nguyen, Cattram D.
    Carlin, John B.
    Lee, Katherine J.
    STATISTICS IN MEDICINE, 2021, 40 (21) : 4660 - 4674
  • [36] Direct Likelihood Analysis and Multiple Imputation for Missing Item Scores in Multilevel Cross-Classification Educational Data
    Kadengye, Damazo T.
    Ceulemans, Eva
    Van den Noortgate, Wim
    APPLIED PSYCHOLOGICAL MEASUREMENT, 2014, 38 (01) : 61 - 80
  • [37] Where Big Data meets Linked Data: Applying standard data models to environmental data streams
    Leadbetter, Adam
    Smyth, Damian
    Fuller, Robert
    O'Grady, Eoin
    Shepherd, Adam
    2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2016, : 2929 - 2937
  • [38] Assessment of Internal Validity of Prognostic Models through Bootstrapping and Multiple Imputation of Missing Data
    Baneshi, M. R.
    Talei, A.
    IRANIAN JOURNAL OF PUBLIC HEALTH, 2012, 41 (05) : 110 - 115
  • [39] IMPROVING BAYESIAN MIXTURE MODELS FOR MULTIPLE IMPUTATION OF MISSING DATA USING FOCUSED CLUSTERING
    Wei, Lan
    Reiter, Jerome P.
    REVSTAT-STATISTICAL JOURNAL, 2018, 16 (02) : 213 - 230
  • [40] Multiple imputation of longitudinal categorical data through bayesian mixture latent Markov models
    Vidotto, Davide
    Vermunt, Jeroen K.
    Van Deun, Katrijn
    JOURNAL OF APPLIED STATISTICS, 2020, 47 (10) : 1720 - 1738