Applying Multiple Imputation with Geostatistical Models to Account for Item Nonresponse in Environmental Data

被引:7
|
作者
Munoz, Breda [1 ]
Lesser, Virginia M. [2 ,3 ]
Smith, Ruben A. [4 ]
机构
[1] RTI Int, RTP, Durham, NC 27709 USA
[2] Oregon State Univ, Survey Res Ctr, Corvallis, OR 97331 USA
[3] Oregon State Univ, Stat, Corvallis, OR 97331 USA
[4] Oregon State Univ, Corvallis, OR 97331 USA
关键词
Environmental surveys; missing data; nonresponse;
D O I
10.22237/jmasm/1272687960
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Methods proposed to solve the missing data problem in estimation procedures should consider the type of missing data, the missing data mechanism, the sampling design and the availability of auxiliary variables correlated with the process of interest. This article explores the use of geostatistical models with multiple imputation to deal with missing data in environmental surveys. The method is applied to the analysis of data generated from a probability survey to estimate Coho salmon abundance in streams located in western Oregon watersheds.
引用
收藏
页码:274 / 286
页数:13
相关论文
共 50 条
  • [21] Multiple Imputation in Survival Models: Applied on Breast Cancer Data
    Baneshi, M. R.
    Talei, A. R.
    IRANIAN RED CRESCENT MEDICAL JOURNAL, 2011, 13 (08) : 544 - 549
  • [22] Bayesian Latent Class Models for the Multiple Imputation of Categorical Data
    Vidotto, Davide
    Vermunt, Jeroen K.
    Van Deun, Katrijn
    METHODOLOGY-EUROPEAN JOURNAL OF RESEARCH METHODS FOR THE BEHAVIORAL AND SOCIAL SCIENCES, 2018, 14 (02) : 56 - 68
  • [23] Item Response Models for Multiple Attempts With Incomplete Data
    Bergner, Yoav
    Choi, Ikkyu
    Castellano, Katherine E.
    JOURNAL OF EDUCATIONAL MEASUREMENT, 2019, 56 (02) : 415 - 436
  • [24] Using Multiple Imputation to Account for the Uncertainty Due to Missing Data in the Context of Factor Retention
    Xia, Yan
    Havan, Selim
    EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 2024, 84 (03) : 577 - 593
  • [25] Applying multiple imputation to multi-item patient reported outcome measures: advantages and disadvantages of imputing at the item, sub-scale or score level
    Rombach, Ines
    Burke, Orlaith
    Jenkinson, Crispin
    Gray, Alastair
    Rivero-Arias, Oliver
    HEALTH AND QUALITY OF LIFE OUTCOMES, 2016, 14
  • [26] Multiple imputation of incomplete multilevel data using Heckman selection models
    Munoz, Johanna
    Efthimiou, Orestis
    Audigier, Vincent
    de Jong, Valentijn M. T.
    Debray, Thomas P. A.
    STATISTICS IN MEDICINE, 2024, 43 (03) : 514 - 533
  • [27] Variable selection for additive models with missing data via multiple imputation
    Yuta Shimazu
    Takayuki Yamaguchi
    Ibuki A. J. Hoshina
    Hidetoshi Matsui
    Behaviormetrika, 2025, 52 (1) : 163 - 178
  • [28] Results Differ by Applying Distinctive Multiple Imputation Approaches on the Longitudinal Cardiovascular Health Study Data
    Ning, Yuming
    McAvay, Gail
    Chaudhry, Sarwat I.
    Arnold, Alice M.
    Allore, Heather G.
    EXPERIMENTAL AGING RESEARCH, 2013, 39 (01) : 27 - 43
  • [29] Abstract: Applying Maximum Likelihood Estimation and Multiple Imputation to Moderated Regression Models With Incomplete Predictor Variables
    Cham, Heining
    Baraldi, Amanda N.
    Enders, Craig K.
    MULTIVARIATE BEHAVIORAL RESEARCH, 2013, 48 (01) : 153 - 154
  • [30] Bayesian Multilevel Latent Class Models for the Multiple Imputation of Nested Categorical Data
    Vidotto, Davide
    Vermunt, Jeroen K.
    van Deun, Katrijn
    JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2018, 43 (05) : 511 - 539