On Model-Based Clustering, Classification, and Discriminant Analysis

被引:0
|
作者
McNicholas, Paul D. [1 ]
机构
[1] Univ Guelph, Dept Math & Stat, Guelph, ON, Canada
来源
关键词
Classification; clustering; discriminant analysis; mclust; mixture models; model-based clustering; model selection; parameter estimation; pgmm;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The use of mixture models for clustering and classification has burgeoned into an important subfield of multivariate analysis. These approaches have been around for a half-century or so, with significant activity in the area over the past decade. The primary focus of this paper is to review work in model-based clustering, classification, and discriminant analysis, with particular attention being paid to two techniques that can be implemented using respective R packages. Parameter estimation and model selection are also discussed. The paper concludes with a summary, discussion, and some thoughts on future work.
引用
收藏
页码:181 / 199
页数:19
相关论文
共 50 条
  • [41] Model-Based Cognitive Neuroscience Approaches to Computational Psychiatry: Clustering and Classification
    Wiecki, Thomas V.
    Poland, Jeffrey
    Frank, Michael J.
    CLINICAL PSYCHOLOGICAL SCIENCE, 2015, 3 (03) : 378 - 399
  • [42] Model-based system for the classification and analysis of materials
    Capelo, A.C.
    Ironi, L.
    Tentoni, S.
    Intelligent systems engineering, 1993, 2 (03): : 145 - 158
  • [43] Model-based clustering and classification with non-normal mixture distributions
    Sharon X. Lee
    Geoffrey J. McLachlan
    Statistical Methods & Applications, 2013, 22 : 427 - 454
  • [44] Model-based clustering and analysis of life history data
    Scott, Marc A.
    Mohan, Kaushik
    Gauthier, Jacques-Antoine
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2020, 183 (03) : 1231 - 1251
  • [45] Model-based video scene clustering with noise analysis
    Lu, H
    Li, ZY
    Tan, YP
    2004 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 2, PROCEEDINGS, 2004, : 105 - 108
  • [46] Model-based clustering with envelopes
    Wang, Wenjing
    Zhang, Xin
    Mai, Qing
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01): : 82 - 109
  • [47] Challenges in model-based clustering
    Melnykov, Volodymyr
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2013, 5 (02): : 135 - 148
  • [48] Model-based linear clustering
    Yan, Guohua
    Welch, William J.
    Zamar, Ruben H.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2010, 38 (04): : 716 - 737
  • [49] Model-Based Edge Clustering
    Sewell, Daniel K.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2021, 30 (02) : 390 - 405
  • [50] Model-Based Clustering with HDBSCAN
    Strobl, Michael
    Sander, Joerg
    Campello, Ricardo J. G. B.
    Zaiane, Osmar
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT II, 2021, 12458 : 364 - 379