Challenges in model-based clustering

被引:26
|
作者
Melnykov, Volodymyr [1 ]
机构
[1] Univ Alabama, Dept Informat Syst Stat & Management Sci, Tuscaloosa, AL 35487 USA
关键词
model-based clustering; finite mixture models; EM algorithm; initialization; dimensionality reduction;
D O I
10.1002/wics.1248
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Model-based clustering is an increasingly popular area of cluster analysis that relies on probabilistic description of data by means of finite mixture models. Mixture distributions prove to be a powerful technique for modeling heterogeneity in data. In model-based clustering, each data group is seen as a sample from one or several mixture components. Despite attractive interpretation, model-based clustering posesmany challenges. This paper discusses some of the most important problems a researcher might encounter while applying the model-based cluster analysis. (C) 2013 Wiley Periodicals, Inc.
引用
收藏
页码:135 / 148
页数:14
相关论文
共 50 条
  • [1] Model-Based Clustering
    Gormley, Isobel Claire
    Murphy, Thomas Brendan
    Raftery, Adrian E.
    [J]. ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, 2023, 10 : 573 - 595
  • [2] Model-Based Clustering
    Paul D. McNicholas
    [J]. Journal of Classification, 2016, 33 : 331 - 373
  • [3] Model-Based Clustering
    McNicholas, Paul D.
    [J]. JOURNAL OF CLASSIFICATION, 2016, 33 (03) : 331 - 373
  • [4] Model-based subspace clustering
    Hoff, Peter D.
    [J]. BAYESIAN ANALYSIS, 2006, 1 (02): : 321 - 344
  • [5] Parametric model-based clustering
    Nikulin, V
    Smola, AJ
    [J]. DATA MINING, INTRUSION DETECTION, INFORMATION ASSURANCE, AND DATA NETWORKS SECURITY 2005, 2005, 5812 : 190 - 201
  • [6] Model-Based Clustering with HDBSCAN
    Strobl, Michael
    Sander, Joerg
    Campello, Ricardo J. G. B.
    Zaiane, Osmar
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT II, 2021, 12458 : 364 - 379
  • [7] A model-based distance for clustering
    Rattray, M
    [J]. IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL IV, 2000, : 13 - 16
  • [8] Model-Based Edge Clustering
    Sewell, Daniel K.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2021, 30 (02) : 390 - 405
  • [9] Model-based linear clustering
    Yan, Guohua
    Welch, William J.
    Zamar, Ruben H.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2010, 38 (04): : 716 - 737
  • [10] Model-based clustering with envelopes
    Wang, Wenjing
    Zhang, Xin
    Mai, Qing
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01): : 82 - 109