SUBJOININGS OF AFFINE KAC-MOODY ALGEBRAS

被引:2
|
作者
LENG, X
PATERA, J
SHARP, RT
机构
[1] MCGILL UNIV,DEPT PHYS,MONTREAL H3A 2T8,QUEBEC,CANADA
[2] UNIV MONTREAL,CTR RECH MATH,MONTREAL H3C 3J7,QUEBEC,CANADA
来源
关键词
D O I
10.1088/0305-4470/23/15/015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Subjoinings among affine Kac-Moody algebras is a relation generalising the algebra-subalgebra relation. It is analogous to subjoinings among semisimple finite Lie algebras. A list of maximal subjoinings of equal rank affine Kac-Moody algebras is presented. It is conjectured that there are no other maximal subjoinings.
引用
下载
收藏
页码:3397 / 3407
页数:11
相关论文
共 50 条
  • [21] Langlands decomposition of affine Kac-Moody algebras
    Das, B.
    Pati, K. C.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2007, 38 (06): : 533 - 552
  • [22] ORBIT DEPTHS OF AFFINE KAC-MOODY ALGEBRAS
    CAPPS, RH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (11): : 1851 - 1860
  • [23] Varieties and identities of affine Kac-Moody algebras
    Zaicev, MV
    METHODS IN RING THEORY: PROCEEDINGS OF THE TRENTO CONFERENCE, 1998, 198 : 303 - 314
  • [24] A characterization of affine Kac-Moody lie algebras
    Allison, BN
    Berman, S
    Gao, Y
    Pianzola, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 185 (03) : 671 - 688
  • [25] ORTHOGONAL SYMMETRIC AFFINE KAC-MOODY ALGEBRAS
    Freyn, Walter
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (10) : 7133 - 7159
  • [26] Gradings and contractions of affine Kac-Moody algebras
    Daboul, Claudia
    Daboul, Jamil
    de Montigny, Marc
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (06)
  • [27] Geometric realizations of affine Kac-Moody algebras
    Futorny, Vyacheslav
    Krizka, Libor
    Somberg, Petr
    JOURNAL OF ALGEBRA, 2019, 528 : 177 - 216
  • [28] New representations of affine Kac-Moody algebras
    Cai, Yan-An
    Tan, Haijun
    Zhao, Kaiming
    JOURNAL OF ALGEBRA, 2020, 547 : 95 - 115
  • [29] A Characterization of Affine Kac-Moody Lie Algebras
    Bruce N. Allison
    Stephen Berman
    Yun Gao
    Arturo Pianzola
    Communications in Mathematical Physics, 1997, 185 : 671 - 688
  • [30] A CLASS OF REPRESENTATIONS OF AFFINE KAC-MOODY ALGEBRAS
    CAPPS, RH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (21): : 4727 - 4738