ORTHOGONAL SYMMETRIC AFFINE KAC-MOODY ALGEBRAS

被引:1
|
作者
Freyn, Walter [1 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, D-64289 Darmstadt, Germany
关键词
Lie algebra; affine Kac-Moody algebra; loop algebra; orthogonal symmetric Kac-Moody algebra; CLASSIFICATION; FORMS;
D O I
10.1090/tran/6257
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Riemannian symmetric spaces are fundamental objects in finite dimensional differential geometry. An important problem is the construction of symmetric spaces for generalizations of simple Lie groups, especially their closest infinite dimensional analogues, known as affine Kac-Moody groups. We solve this problem and construct affine Kac-Moody symmetric spaces in a series of several papers. This paper focuses on the algebraic side; more precisely, we introduce OSAKAs, the algebraic structures used to describe the connection between affine Kac-Moody symmetric spaces and affine Kac-Moody algebras and describe their classification.
引用
下载
收藏
页码:7133 / 7159
页数:27
相关论文
共 50 条
  • [1] SUBJOININGS OF AFFINE KAC-MOODY ALGEBRAS
    LENG, X
    PATERA, J
    SHARP, RT
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (15): : 3397 - 3407
  • [2] Varieties of affine Kac-Moody algebras
    Zaitsev, MV
    MATHEMATICAL NOTES, 1997, 62 (1-2) : 80 - 86
  • [3] Tubular algebras and affine Kac-Moody algebras
    Zheng-xin CHEN & Ya-nan LIN School of Mathematics and Computer Science
    School of Mathematical Sciences
    Science China Mathematics, 2007, (04) : 521 - 532
  • [4] Tubular algebras and affine Kac-Moody algebras
    Chen, Zheng-an
    Lin, Ya-nan
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (04): : 521 - 532
  • [5] AUTOMORPHISMS OF AFFINE KAC-MOODY ALGEBRAS
    BAUSCH, J
    TITS, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1986, 302 (11): : 409 - 412
  • [6] Characters of affine Kac-Moody algebras
    Hussin, A
    King, RC
    GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 162 - 166
  • [7] Varieties of affine Kac-Moody algebras
    M. V. Zaitsev
    Mathematical Notes, 1997, 62 : 80 - 86
  • [8] Tubular algebras and affine Kac-Moody algebras
    Zheng-xin Chen
    Ya-nan Lin
    Science in China Series A: Mathematics, 2007, 50 : 521 - 532
  • [9] Identities of affine Kac-Moody algebras
    Zaicev, MV
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1996, (02): : 33 - 36
  • [10] On automorphisms of affine Kac-Moody algebras
    Jin, QQ
    Zhang, ZX
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (07) : 2827 - 2858