ORTHOGONAL SYMMETRIC AFFINE KAC-MOODY ALGEBRAS

被引:1
|
作者
Freyn, Walter [1 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, D-64289 Darmstadt, Germany
关键词
Lie algebra; affine Kac-Moody algebra; loop algebra; orthogonal symmetric Kac-Moody algebra; CLASSIFICATION; FORMS;
D O I
10.1090/tran/6257
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Riemannian symmetric spaces are fundamental objects in finite dimensional differential geometry. An important problem is the construction of symmetric spaces for generalizations of simple Lie groups, especially their closest infinite dimensional analogues, known as affine Kac-Moody groups. We solve this problem and construct affine Kac-Moody symmetric spaces in a series of several papers. This paper focuses on the algebraic side; more precisely, we introduce OSAKAs, the algebraic structures used to describe the connection between affine Kac-Moody symmetric spaces and affine Kac-Moody algebras and describe their classification.
引用
下载
收藏
页码:7133 / 7159
页数:27
相关论文
共 50 条
  • [21] Graded subalgebras of affine Kac-Moody algebras
    Y. Barnea
    A. Shalev
    E. I. Zelmanov
    Israel Journal of Mathematics, 1998, 104 : 321 - 334
  • [22] Langlands decomposition of affine Kac-Moody algebras
    Das, B.
    Pati, K. C.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2007, 38 (06): : 533 - 552
  • [23] ORBIT DEPTHS OF AFFINE KAC-MOODY ALGEBRAS
    CAPPS, RH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (11): : 1851 - 1860
  • [24] Varieties and identities of affine Kac-Moody algebras
    Zaicev, MV
    METHODS IN RING THEORY: PROCEEDINGS OF THE TRENTO CONFERENCE, 1998, 198 : 303 - 314
  • [25] A characterization of affine Kac-Moody lie algebras
    Allison, BN
    Berman, S
    Gao, Y
    Pianzola, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 185 (03) : 671 - 688
  • [26] Gradings and contractions of affine Kac-Moody algebras
    Daboul, Claudia
    Daboul, Jamil
    de Montigny, Marc
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (06)
  • [27] Geometric realizations of affine Kac-Moody algebras
    Futorny, Vyacheslav
    Krizka, Libor
    Somberg, Petr
    JOURNAL OF ALGEBRA, 2019, 528 : 177 - 216
  • [28] New representations of affine Kac-Moody algebras
    Cai, Yan-An
    Tan, Haijun
    Zhao, Kaiming
    JOURNAL OF ALGEBRA, 2020, 547 : 95 - 115
  • [29] A Characterization of Affine Kac-Moody Lie Algebras
    Bruce N. Allison
    Stephen Berman
    Yun Gao
    Arturo Pianzola
    Communications in Mathematical Physics, 1997, 185 : 671 - 688
  • [30] A CLASS OF REPRESENTATIONS OF AFFINE KAC-MOODY ALGEBRAS
    CAPPS, RH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (21): : 4727 - 4738