ALGEBRAIC ERROR ANALYSIS FOR SURFACE CURVATURES AND SEGMENTATION OF 3-D RANGE IMAGES

被引:14
|
作者
ABDELMALEK, NN
机构
[1] Division of Electrical Engineering, National Research Council of Canada, Ottawa
关键词
Algebraic error analysis; Gaussian and mean curvatures; Random noise; Range images; Shape and 3-D description; Surface segmentation;
D O I
10.1016/0031-3203(90)90128-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper is divided into two parts. In the first part an algebraic error analysis for the calculated surface Gaussian and mean curvatures of 3-D range images is presented. The error analysis results are used to illustrate the effect of noise on the segmentation of range images using the curvature 8-sign label scheme. In the second part a segmentation procedure for 3-D range images based on conclusions deducted from the first part is proposed. In this procedure, jump edges are first obtained. Then a curvature 3-sign label scheme is used for the segmentation. A simple method is used to check the boundary points between segmentation patches. If a boundary point lies on a planar region it is deleted. In the planarity test we use some of the intermediate results from the first part of the paper. Experimental results and comments are given. © 1990.
引用
收藏
页码:807 / 817
页数:11
相关论文
共 50 条
  • [41] A tensor voting approach for the hierarchical segmentation of 3-D acoustic images
    Tao, LM
    Murino, V
    Medioni, G
    FIRST INTERNATIONAL SYMPOSIUM ON 3D DATA PROCESSING VISUALIZATION AND TRANSMISSION, 2002, : 126 - 135
  • [42] Segmentation of 3-D MRI brain images using information propagation
    Wang, Jianzhong
    Kong, Jun
    Lu, Yinghua
    Zhang, Jingdan
    Zhang, Baoxue
    Lect. Notes Comput. Sci., (348-355):
  • [43] An Energy Matching Vessel Segmentation Framework in 3-D Medical Images
    Liu, Pan
    Huang, Gao
    Jing, Jing
    Bian, Suyan
    Cheng, Liuquan
    Lu, Xin Yang
    Rao, Chongyou
    Liu, Yu
    Hua, Yun
    Wang, Yongjun
    He, Kunlun
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (04) : 1476 - 1488
  • [44] Segmentation of head bones in 3-D CT images from an example
    Faisan, S.
    Passat, N.
    Noblet, V.
    Chabrier, R.
    Armspach, J. -P
    Meyer, C.
    2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 81 - +
  • [45] Segmentation of 3-D MRI brain images using information propagation
    Wang, Jianzhong
    Kong, Jun
    Lu, Yinghua
    Zhang, Jingdan
    Zhang, Baoxue
    MEDICAL IMAGING AND AUGMENTED REALITY, 2006, 4091 : 348 - 355
  • [46] FULLY AUTOMATIC PLAQUE SEGMENTATION IN 3-D CAROTID ULTRASOUND IMAGES
    Cheng, Jieyu
    Li, He
    Xiao, Feng
    Fenster, Aaron
    Zhang, Xuming
    He, Xiaoling
    Li, Ling
    Ding, Mingyue
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2013, 39 (12): : 2431 - 2446
  • [47] Integrated approach for segmentation of 3-D confocal images of a tissue specimen
    Adiga, PSU
    MICROSCOPY RESEARCH AND TECHNIQUE, 2001, 54 (04) : 260 - 270
  • [48] Segmentation of Multiple Heart Cavities in 3-D Transesophageal Ultrasound Images
    Haak, Alexander
    Vegas-Sanchez-Ferrero, Gonzalo
    Mulder, Harriet W.
    Ren, Ben
    Kirisli, Hortense A.
    Metz, Coert
    van Burken, Gerard
    van Stralen, Marijn
    Pluim, Josien P. W.
    van der Steen, Antonius F. W.
    van Walsum, Theo
    Bosch, Johannes G.
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2015, 62 (06) : 1179 - 1189
  • [49] Unsupervised Segmentation of Hyperspectral Images Using 3-D Convolutional Autoencoders
    Nalepa, Jakub
    Myller, Michal
    Imai, Yasuteru
    Honda, Ken-Ichi
    Takeda, Tomomi
    Antoniak, Marek
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (11) : 1948 - 1952
  • [50] 3-D Spot Modeling for Automatic Segmentation of cDNA Microarray Images
    Zacharia, Eleni
    Maroulis, Dimitris
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2010, 9 (03) : 181 - 192