INTERACTION OF TURING AND HOPF BIFURCATIONS IN CHEMICAL-SYSTEMS

被引:90
|
作者
ROVINSKY, A
MENZINGER, M
机构
[1] Department of Chemistry, University of Toronto, Toronto
来源
PHYSICAL REVIEW A | 1992年 / 46卷 / 10期
关键词
D O I
10.1103/PhysRevA.46.6315
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
When a Turing bifurcation occurs close to a Hopf bifurcation in the parameter space of a reaction-diffusion system, the Turing and Hopf modes may interact nonlinearly to form, a priori, a variety of complex spatiotemporal patterns. We have studied this type of interaction for three models of chemically active media: the Lengyel-Epstein model of the ClO2--I--malonic acid system, a model that describes the ferroin-catalyzed Belousov-Zhabotinsky reaction, and the Brusselator. One and two spatial dimensions are considered. The Poincare-Birkhoff method was implemented for the reduction of the models to the Turing-Hopf normal forms. The normal-form analyses show that the stability regions of stationary periodic patterns and of homogeneous oscillations usually overlap over a wide region in parameter space, forming a domain of bistability. Mixed-mode (spatiotemporal) patterns do not occur in the models considered except for a very small region in the parameter space for two-dimensional hexagonal patterns.
引用
下载
收藏
页码:6315 / 6322
页数:8
相关论文
共 50 条
  • [41] HOPF BIFURCATIONS IN NONAUTONOMOUS SYSTEMS AT POINTS OF RESONANCE
    程崇庆
    Science China Mathematics, 1990, (02) : 206 - 219
  • [42] DEGENERATE HOPF BIFURCATIONS IN POWER-SYSTEMS
    CHEN, RL
    VARAIYA, PP
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1988, 35 (07): : 818 - 824
  • [43] Hopf bifurcations in general systems of Brusselator type
    Li, Yan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 28 : 32 - 47
  • [44] On Hopf bifurcations of piecewise planar Hamiltonian systems
    Yang, Junmin
    Han, Maoan
    Huang, Wenzhang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (02) : 1026 - 1051
  • [45] Discretizing dynamical systems with generalized Hopf bifurcations
    Paez Chavez, Joseph
    NUMERISCHE MATHEMATIK, 2011, 118 (02) : 229 - 246
  • [46] HOPF BIFURCATIONS IN NONAUTONOMOUS SYSTEMS AT POINTS OF RESONANCE
    CHENG, CQ
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1990, 33 (02): : 206 - 219
  • [47] Discretizing dynamical systems with generalized Hopf bifurcations
    Joseph Páez Chávez
    Numerische Mathematik, 2011, 118 : 229 - 246
  • [48] HOPF BIFURCATIONS FOR NEAR-HAMILTONIAN SYSTEMS
    Han, Maoan
    Yang, Junmin
    Yu, Pei
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (12): : 4117 - 4130
  • [49] Strong Resonances at Hopf Bifurcations in Control Systems
    P.-A. Bliman
    A. M. Krasnosel'skii
    D. I. Rachinskii
    Automation and Remote Control, 2001, 62 : 1783 - 1802
  • [50] Nilpotent Hopf bifurcations in coupled cell systems
    Elmhirst, Toby
    Golubitsky, Martin
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2006, 5 (02): : 205 - 251