A Kuramoto coupling of quasi-cycle oscillators with application to neural networks

被引:10
|
作者
Greenwood, Priscilla E. [1 ]
McDonnell, Mark D. [2 ]
Ward, Lawrence M. [3 ,4 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[2] Univ South Australia, Sch Informat Technol & Math Sci, Inst Telecommun Res, Computat & Theoret Neurosci Lab, Mawson Lakes, SA 5095, Australia
[3] Univ British Columbia, Dept Psychol, 2136 West Mall, Vancouver, BC V6T 1Z4, Canada
[4] Univ British Columbia, Brain Res Ctr, 2136 West Mall, Vancouver, BC V6T 1Z4, Canada
基金
加拿大自然科学与工程研究理事会; 澳大利亚研究理事会;
关键词
Kuramoto Coupling; Quasi-Cycles; Neural Oscillators; Stochastic Process; Excitation-Inhibition Interaction; Synchronization; Kuramoto Model; Phase Locking Index;
D O I
10.1166/jcsmd.2016.1091
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A family of stochastic processes has quasi-cycle oscillations if its oscillations are sustained by noise. For such a family we define a Kuramoto-type coupling of both phase and amplitude processes. We find that synchronization, as measured by the phase-locking index, increases with coupling strength, and appears, for larger network sizes, to have a critical value, at which the network moves relatively abruptly from incoherence to complete synchronization as in Kuramoto couplings of fixed amplitude oscillators. We compare several aspects of the dynamics of unsynchronized and highly synchronized networks. Our motivation comes from synchronization in neural networks.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [41] Controlling synchrony in a network of Kuramoto oscillators with time-varying coupling
    Leander, Rachel
    Lenhart, Suzanne
    Protopopescu, Vladimir
    PHYSICA D-NONLINEAR PHENOMENA, 2015, 301 : 36 - 47
  • [42] Uniform global asymptotic synchronization of Kuramoto oscillators via hybrid coupling
    Bertollo, R.
    Panteley, E.
    Postoyan, R.
    Zaccarian, L.
    IFAC PAPERSONLINE, 2020, 53 (02): : 5819 - 5824
  • [43] Coupling functions in networks of oscillators
    Stankovski, Tomislav
    Ticcinelli, Valentina
    McClintock, Peter V. E.
    Stefanovska, Aneta
    NEW JOURNAL OF PHYSICS, 2015, 17
  • [44] Non-monotonic transients to synchrony in Kuramoto networks and electrochemical oscillators
    Ocampo-Espindola, Jorge Luis
    Omel'chenko, Oleh E.
    Kiss, Istvan Z.
    JOURNAL OF PHYSICS-COMPLEXITY, 2021, 2 (01):
  • [45] Synchrony-optimized networks of non-identical Kuramoto oscillators
    Brede, Markus
    PHYSICS LETTERS A, 2008, 372 (15) : 2618 - 2622
  • [46] Synchronization Patterns in Networks of Kuramoto Oscillators: A Geometric Approach for Analysis and Control
    Tiberi, Lorenzo
    Favaretto, Chiara
    Innocenti, Mario
    Bassett, Danielle S.
    Pasqualetti, Fabio
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [47] When is sync globally stable in sparse networks of identical Kuramoto oscillators?
    Sokolov, Yury
    Ermentrout, G. Bard
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 533
  • [48] Stability in the Kuramoto-Sakaguchi model for finite networks of identical oscillators
    Mihara, Antonio
    Medrano-T, Rene O.
    NONLINEAR DYNAMICS, 2019, 98 (01) : 539 - 550
  • [49] A fast algorithm to calculate the critical coupling strength for synchronization in a chain of Kuramoto oscillators
    Lin Zhang
    Ye Wu
    Xia Shi
    Zuguo He
    Jinghua Xiao
    Nonlinear Dynamics, 2014, 77 : 99 - 105
  • [50] Controlling the collective behaviour of networks of heterogenous Kuramoto oscillators with phase lags
    Alderisio, Francesco
    di Bernardo, Mario
    2018 EUROPEAN CONTROL CONFERENCE (ECC), 2018, : 2248 - 2253