Laplace transform method for one-dimensional heat and wave equations with nonlocal conditions

被引:0
|
作者
Bahuguna, D. [1 ]
Abbas, S. [1 ]
Shukla, R. K. [2 ]
机构
[1] Indian Inst Technol Kanpur, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
[2] Invertis Grp Inst, Bareilly 243123, UP, India
关键词
Laplace transform; wave equation; heat equation; Numerical Algorithms;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we discuss the one dimensional heat equation and the wave equation subject to nonlocal conditions. We use the method of Laplace transforms. Finally, we obtain the solution by using a numerical technique for inverting the Laplace transforms.
引用
收藏
页码:96 / 100
页数:5
相关论文
共 50 条
  • [41] Asymptotic behavior of solution curves of nonlocal one-dimensional elliptic equations
    Shibata, Tetsutaro
    BOUNDARY VALUE PROBLEMS, 2022, 2022 (01)
  • [42] On Global Solvability of One-Dimensional Quasilinear Wave Equations
    D. V. Tunitsky
    Lobachevskii Journal of Mathematics, 2020, 41 : 2510 - 2524
  • [43] On Global Solvability of One-Dimensional Quasilinear Wave Equations
    Tunitsky, D. V.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2020, 41 (12) : 2510 - 2524
  • [44] ONE-DIMENSIONAL WAVE-EQUATIONS IN DISORDERED MEDIA
    DELYON, F
    KUNZ, H
    SOUILLARD, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (01): : 25 - 42
  • [45] Solitary wave solutions of the one-dimensional Boussinesq equations
    D. G. Natsis
    Numerical Algorithms, 2007, 44 : 281 - 289
  • [46] ONE-DIMENSIONAL WAVE EQUATIONS DEFINED BY FRACTAL LAPLACIANS
    Chan, John Fun-Choi
    Ngai, Sze-Man
    Teplyaev, Alexander
    JOURNAL D ANALYSE MATHEMATIQUE, 2015, 127 : 219 - 246
  • [47] A one-dimensional symmetry result for a class of nonlocal semilinear equations in the plane
    Hamel, Francois
    Ros-Oton, Xavier
    Sire, Yannick
    Valdinoci, Enrico
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (02): : 469 - 482
  • [48] Asymptotic behavior of solution curves of nonlocal one-dimensional elliptic equations
    Tetsutaro Shibata
    Boundary Value Problems, 2022
  • [49] Solitary wave solutions of the one-dimensional Boussinesq equations
    Natsis, D. G.
    NUMERICAL ALGORITHMS, 2007, 44 (03) : 281 - 289
  • [50] Carleman estimates for one-dimensional degenerate heat equations
    Martinez, P
    Vancostenoble, J
    JOURNAL OF EVOLUTION EQUATIONS, 2006, 6 (02) : 325 - 362