Laplace transform method for one-dimensional heat and wave equations with nonlocal conditions

被引:0
|
作者
Bahuguna, D. [1 ]
Abbas, S. [1 ]
Shukla, R. K. [2 ]
机构
[1] Indian Inst Technol Kanpur, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
[2] Invertis Grp Inst, Bareilly 243123, UP, India
关键词
Laplace transform; wave equation; heat equation; Numerical Algorithms;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we discuss the one dimensional heat equation and the wave equation subject to nonlocal conditions. We use the method of Laplace transforms. Finally, we obtain the solution by using a numerical technique for inverting the Laplace transforms.
引用
收藏
页码:96 / 100
页数:5
相关论文
共 50 条
  • [21] ON THE DERIVATIVES OF THE SOLUTIONS OF ONE-DIMENSIONAL WAVE EQUATIONS
    HARTMAN, P
    WINTNER, A
    AMERICAN JOURNAL OF MATHEMATICS, 1950, 72 (01) : 148 - 156
  • [23] THE APPROXIMATE SOLUTION OF ONE-DIMENSIONAL WAVE EQUATIONS
    ECKART, C
    REVIEWS OF MODERN PHYSICS, 1948, 20 (02) : 399 - 417
  • [24] One-dimensional wave propagation problem in a nonlocal finite medium with finite difference method
    Ozer, Ahmet Ozkan
    Inan, E.
    VIBRATION PROBLEMS ICOVP 2005, 2007, 111 : 383 - +
  • [25] Transition radiation in a piecewise-linear and infinite one-dimensional structure-a Laplace transform method
    Faragau, Andrei B.
    Metrikine, Andrei V.
    van Dalen, Karel N.
    NONLINEAR DYNAMICS, 2019, 98 (04) : 2435 - 2461
  • [26] Collocation method for one dimensional nonlocal diffusion equations
    Guan, Qingguang
    Gunzburger, Max
    Zhang, Xiaoping
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2022, 38 (06) : 1618 - 1635
  • [27] Solution of a one-dimensional heat equation with axial symmetry via Laplace Adomian decomposition method
    Edeki, S. O.
    Imaga, O. F.
    Akinlabi, G. O.
    2ND INTERNATIONAL CONFERENCE ON MATHEMATICS AND COMPUTERS IN SCIENCE AND ENGINEERING (MACISE 2020), 2020, : 301 - 303
  • [28] Momentum-time flux conservation method for one-dimensional wave equations
    Huang, Zhen-Ting
    Hsu, Huan-Chun
    Chang, Chau-Lyan
    Wu, Chin-Tien
    Jiang, T. F.
    COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (03) : 473 - 480
  • [29] A compact locally one-dimensional method for fractional diffusion-wave equations
    Wang Y.-M.
    Wang T.
    J. Appl. Math. Comp., 1-2 (41-67): : 41 - 67
  • [30] A PROBABILISTIC NUMERICAL-METHOD FOR SOLVING ONE-DIMENSIONAL WAVE-EQUATIONS
    KARR, CL
    GOLDBERG, DE
    DEVELOPMENTS IN THEORETICAL AND APPLIED MECHANICS, VOL 14, 1988, 14 : 547 - 553