SYMMETRY AND CHAOTIC DATA

被引:2
|
作者
STEWART, I
机构
关键词
D O I
10.1038/354113b0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:113 / 113
页数:1
相关论文
共 50 条
  • [31] Random symmetry breaking and freezing in chaotic networks
    Peleg, Y.
    Kinzel, W.
    Kanter, I.
    PHYSICAL REVIEW E, 2012, 86 (03):
  • [32] SYMMETRY-INCREASING BIFURCATION OF CHAOTIC ATTRACTORS
    CHOSSAT, P
    GOLUBITSKY, M
    PHYSICA D, 1988, 32 (03): : 423 - 436
  • [33] A smooth chaotic map with parameterized shape and symmetry
    Chaves, Daniel P. B.
    Souza, Carlos E. C.
    Pimentel, Cecilio
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2016,
  • [34] ON THE SYMMETRY-BREAKING BIFURCATION OF CHAOTIC ATTRACTORS
    SZABO, KG
    TEL, T
    JOURNAL OF STATISTICAL PHYSICS, 1989, 54 (3-4) : 925 - 948
  • [35] Phenomenological model for symmetry breaking in a chaotic system
    Abul-Magd, AY
    Simbel, MH
    PHYSICAL REVIEW E, 2004, 70 (04):
  • [36] Symmetry Breaking in Fractional Difference Chaotic Equations and Their Control
    Diabi, Louiza
    Ouannas, Adel
    Grassi, Giuseppe
    Momani, Shaher
    SYMMETRY-BASEL, 2025, 17 (03):
  • [37] SYMMETRY-BREAKING BIFURCATION FOR COUPLED CHAOTIC ATTRACTORS
    PIKOVSKY, AS
    GRASSBERGER, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (19): : 4587 - 4597
  • [38] n-dimensional chaotic attractors with crystallographic symmetry
    Dumont, JP
    Heiss, FJ
    Jones, KC
    Reiter, CA
    Vislocky, LM
    CHAOS SOLITONS & FRACTALS, 2001, 12 (04) : 761 - 784
  • [39] Time-Reversible Chaotic System with Conditional Symmetry
    Li, Chunbiao
    Sprott, Julien Clinton
    Liu, Yongjian
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (05):
  • [40] An Offset-Boostable Chaotic Oscillator with Broken Symmetry
    Huang, Lili
    Zhang, Xin
    Zang, Hongyan
    Lei, Tengfei
    Fu, Haiyan
    SYMMETRY-BASEL, 2022, 14 (09):