A Generalization of the Averaged Hausdorff Distance

被引:0
|
作者
Vargas, Andres [1 ]
Bogoya, Johan [1 ]
机构
[1] Pontificia Univ Javeriana, Bogota, Colombia
来源
COMPUTACION Y SISTEMAS | 2018年 / 22卷 / 02期
关键词
Averaged Hausdorff distance; generational distance; inverted generational distance; multiobjective optimization; performance indicator; power means;
D O I
10.13053/CyS-22-2-2950
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The averaged Hausdorff distance Delta(p) is an inframetric which has been recently used in evolutionary multiobjective optimization (EMO). In this paper we introduce a new two-parameter performance indicator Delta(p,q) which generalizes Delta(p) as well as the standard Hausdorff distance. For p, q >= 1 the indicator Delta(p,q) (that we call the (p, q)-averaged distance) turns out to be a proper metric and preserves some of the Delta(p) advantages. We proof several properties of Delta(p,q), and provide a comparison with Delta(p) and the standard Hausdorff distance. For simplicity we restrict ourselves to finite sets, which is the most common case, but our results can be extended to the continuous case.
引用
收藏
页码:331 / 345
页数:15
相关论文
共 50 条
  • [1] A (p, q)-Averaged Hausdorff Distance for Arbitrary Measurable Sets
    Bogoya, Johan M.
    Vargas, Andres
    Cuate, Oliver
    Schuetze, Oliver
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2018, 23 (03)
  • [2] Using the Averaged Hausdorff Distance as a Performance Measure in Evolutionary Multiobjective Optimization
    Schuetze, Oliver
    Esquivel, Xavier
    Lara, Adriana
    Coello Coello, Carlos A.
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2012, 16 (04) : 504 - 522
  • [3] Hausdorff and Gromov-Hausdorff distance
    PROBILITY AND REAL TREES, 2008, 1920 : 45 - 68
  • [4] GENERALIZATION OF THE HAUSDORFF MOMENT PROBLEM
    BORWEIN, D
    JAKIMOVSKI, A
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1981, 33 (04): : 946 - 960
  • [5] A Set Based Newton Method for the Averaged Hausdorff Distance for Multi-Objective Reference Set Problems
    Uribe, Lourdes
    Bogoya, Johan M.
    Vargas, Andres
    Lara, Adriana
    Rudolph, Gunter
    Schuetze, Oliver
    MATHEMATICS, 2020, 8 (10) : 1 - 29
  • [6] The Complexity of the Hausdorff Distance
    Paul Jungeblut
    Linda Kleist
    Tillmann Miltzow
    Discrete & Computational Geometry, 2024, 71 (1) : 177 - 213
  • [7] The Complexity of the Hausdorff Distance
    Jungeblut, Paul
    Kleist, Linda
    Miltzow, Tillmann
    DISCRETE & COMPUTATIONAL GEOMETRY, 2024, 71 (01) : 177 - 213
  • [8] Generalization bounds for averaged classifiers
    Freund, Y
    Mansour, Y
    Schapire, RE
    ANNALS OF STATISTICS, 2004, 32 (04): : 1698 - 1722
  • [9] A Generalization of the Hausdorff-Young Theorem
    M. S. Ramanujan
    N. Tanović-Miller
    Acta Mathematica Hungarica, 1998, 81 : 279 - 303
  • [10] A generalization of the Baker-Hausdorff lemma
    Mendas, Istok P.
    Popovic, Duska B.
    PHYSICA SCRIPTA, 2010, 82 (04)