A Generalization of the Averaged Hausdorff Distance

被引:0
|
作者
Vargas, Andres [1 ]
Bogoya, Johan [1 ]
机构
[1] Pontificia Univ Javeriana, Bogota, Colombia
来源
COMPUTACION Y SISTEMAS | 2018年 / 22卷 / 02期
关键词
Averaged Hausdorff distance; generational distance; inverted generational distance; multiobjective optimization; performance indicator; power means;
D O I
10.13053/CyS-22-2-2950
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The averaged Hausdorff distance Delta(p) is an inframetric which has been recently used in evolutionary multiobjective optimization (EMO). In this paper we introduce a new two-parameter performance indicator Delta(p,q) which generalizes Delta(p) as well as the standard Hausdorff distance. For p, q >= 1 the indicator Delta(p,q) (that we call the (p, q)-averaged distance) turns out to be a proper metric and preserves some of the Delta(p) advantages. We proof several properties of Delta(p,q), and provide a comparison with Delta(p) and the standard Hausdorff distance. For simplicity we restrict ourselves to finite sets, which is the most common case, but our results can be extended to the continuous case.
引用
收藏
页码:331 / 345
页数:15
相关论文
共 50 条
  • [41] Between shapes, using the Hausdorff distance
    van Kreveld, Marc
    Miltzow, Tillmann
    Ophelders, Tim
    Sonke, Willem
    Vermeulen, Jordi L.
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2022, 100
  • [42] Calculating the Hausdorff distance between curves
    School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, United States
    Inf. Process. Lett., 1 (17-22):
  • [43] Relative Hausdorff distance for network analysis
    Aksoy, Sinan G.
    Nowak, Kathleen E.
    Purvine, Emilie
    Young, Stephen J.
    APPLIED NETWORK SCIENCE, 2019, 4 (01)
  • [44] Chordal Hausdorff Convergence and Quasihyperbolic Distance
    Herron, David A.
    Richard, Abigail
    Snipes, Marie A.
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2020, 8 (01): : 36 - 67
  • [45] Measuring Closeness of Graphs—The Hausdorff Distance
    Iztok Banič
    Andrej Taranenko
    Bulletin of the Malaysian Mathematical Sciences Society, 2017, 40 : 75 - 95
  • [46] MODIFICATIONS OF HAUSDORFF DISTANCE FOR OBJECT MATCHING
    Barbierik, Kamil
    Kukal, Jaromir
    Nerad, Jakub
    16TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING MENDEL 2010, 2010, : 471 - 477
  • [47] COMPARING IMAGES USING THE HAUSDORFF DISTANCE
    HUTTENLOCHER, DP
    KLANDERMAN, GA
    RUCKLIDGE, WJ
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1993, 15 (09) : 850 - 863
  • [48] Clustering of Trajectories Based on Hausdorff Distance
    Chen, Jinyang
    Wang, Rangding
    Liu, Liangxu
    Song, Jiatao
    2011 INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND CONTROL (ICECC), 2011, : 1940 - 1944
  • [49] Some Properties and Applications of the Hausdorff Distance
    Arutyunov, A. V.
    Vartapetov, S. A.
    Zhukovskiy, S. E.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 171 (02) : 527 - 535
  • [50] LAMBDA-VARIATION AND HAUSDORFF DISTANCE
    PRUSWISNIOWSKI, F
    MATHEMATISCHE NACHRICHTEN, 1992, 158 : 283 - 297