CONTINUATION PROBLEM AND FRACTAL SETS

被引:0
|
作者
Kabanikhin, S. I. [1 ,2 ]
Bektemesov, M. A. [3 ]
Shishlenin, M. A. [2 ,4 ]
机构
[1] Inst Computat Math & Math Geophys SB RAS, Prospect Akad Lavrentjeva 6, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] Al Farabi Kazakh Natl Univ, Alma Ata 050040, Kazakhstan
[4] Sobolev Inst Math, Novosibirsk 630090, Russia
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2015年 / 12卷
关键词
continuation problem; fractal set;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the continuation problem and its relationship to fractal sets.
引用
收藏
页码:C97 / C103
页数:7
相关论文
共 50 条
  • [21] ON CONTINUATION OF ANALYTIC SETS . PRELIMINARY REPORT
    SHIFFMAN, B
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (03): : 510 - &
  • [22] Sets of Unique Continuation for Heat Equation
    Nikolai Nadirashvili
    Nadezda Varkentina
    Potential Analysis, 2014, 41 : 1267 - 1272
  • [23] Sets of Unique Continuation for Heat Equation
    Nadirashvili, Nikolai
    Varkentina, Nadezda
    POTENTIAL ANALYSIS, 2014, 41 (04) : 1267 - 1272
  • [24] Fractal Schrödinger equation: implications for fractal sets
    Golmankhaneh, Alireza Khalili
    Pellis, Stergios
    Zingales, Massimiliano
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (18)
  • [25] Tsallis entropy on fractal sets
    Golmankhaneh, Alireza Khalili
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2021, 15 (01): : 543 - 549
  • [26] Harmonic measure on fractal sets
    Beliaev, D
    Smirnov, S
    European Congress of Mathematics, 2005, : 41 - 59
  • [27] Diffusion in a class of fractal sets
    Datta, D.P. (dp_datta@yahoo.com), 1600, CESER Publications, Post Box No. 113, Roorkee, 247667, India (30):
  • [28] Spectal dimension of fractal sets
    Wilkinson, M.
    Kennard, H. R.
    Morgan, M. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (41)
  • [29] VANISHING VISCOSITY FOR FRACTAL SETS
    Mosco, Umberto
    Vivaldi, Maria Agostina
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (03) : 1207 - 1235
  • [30] Fundamental Sets of Fractal Functions
    M. A. Navascués
    A. K. B. Chand
    Acta Applicandae Mathematicae, 2008, 100 : 247 - 261