Fractal interpolants constructed through iterated function systems prove more general than classical interpolants. In this paper, we assign a family of fractal functions to several classes of real mappings like, for instance, maps defined on sets that are not intervals, maps integrable but not continuous and may be defined on unbounded domains. In particular, based on fractal interpolation functions, we construct fractal Müntz polynomials that successfully generalize classical Müntz polynomials. The parameters of the fractal Müntz system enable the control and modification of the properties of original functions. Furthermore, we deduce fractal versions of classical Müntz theorems. In this way, the fractal methodology generalizes the fundamental sets of the classical approximation theory and we construct complete systems of fractal functions in spaces of continuous and p-integrable mappings on bounded domains.