Fundamental Sets of Fractal Functions

被引:0
|
作者
M. A. Navascués
A. K. B. Chand
机构
[1] Universidad de Zaragoza,Departamento de Matemática Aplicada, Centro Politécnico Superior de Ingenieros
来源
关键词
Fractal interpolation functions; Müntz space; Müntz theorems; Density; Fundamental sets; 28A80; 41A17; 41A30; 30B10; 11B05;
D O I
暂无
中图分类号
学科分类号
摘要
Fractal interpolants constructed through iterated function systems prove more general than classical interpolants. In this paper, we assign a family of fractal functions to several classes of real mappings like, for instance, maps defined on sets that are not intervals, maps integrable but not continuous and may be defined on unbounded domains. In particular, based on fractal interpolation functions, we construct fractal Müntz polynomials that successfully generalize classical Müntz polynomials. The parameters of the fractal Müntz system enable the control and modification of the properties of original functions. Furthermore, we deduce fractal versions of classical Müntz theorems. In this way, the fractal methodology generalizes the fundamental sets of the classical approximation theory and we construct complete systems of fractal functions in spaces of continuous and p-integrable mappings on bounded domains.
引用
收藏
页码:247 / 261
页数:14
相关论文
共 50 条